Timezone: »
Many data such as social networks, movie preferences or knowledge bases are multi-relational, in that they describe multiple relationships between entities. While there is a large body of work focused on modeling these data, few considered modeling these multiple types of relationships jointly. Further, existing approaches tend to breakdown when the number of these types grows. In this paper, we propose a method for modeling large multi-relational datasets, with possibly thousands of relations. Our model is based on a bilinear structure, which captures the various orders of interaction of the data, but also shares sparse latent factors across different relations. We illustrate the performance of our approach on standard tensor-factorization datasets where we attain, or outperform, state-of-the-art results. Finally, a NLP application demonstrates our scalability and the ability of our model to learn efficient, and semantically meaningful verb representations.
Author Information
Rodolphe Jenatton (INRIA)
Nicolas Le Roux (Microsoft Research)
Antoine Bordes (CNRS / U. Tech. de Compiègne)
Guillaume R Obozinski (Ecole des Ponts - ParisTech)
More from the Same Authors
-
2022 : Poly-S: Analyzing and Improving Polytropon for Data-Efficient Multi-Task Learning »
Lucas Page-Caccia · Edoardo Maria Ponti · Liyuan Liu · Matheus Pereira · Nicolas Le Roux · Alessandro Sordoni -
2022 : Target-based Surrogates for Stochastic Optimization »
Jonathan Lavington · Sharan Vaswani · Reza Babanezhad Harikandeh · Mark Schmidt · Nicolas Le Roux -
2023 Poster: Multi-Head Adapter Routing for Cross-Task Generalization »
Lucas Page-Caccia · Edoardo Maria Ponti · Zhan Su · Matheus Pereira · Nicolas Le Roux · Alessandro Sordoni -
2023 Poster: Deep language networks: joint prompt training of stacked LLMs using variational inference »
Alessandro Sordoni · Eric Yuan · Marc-Alexandre Côté · Matheus Pereira · Adam Trischler · Ziang Xiao · Arian Hosseini · Friederike Niedtner · Nicolas Le Roux -
2023 Poster: Decision-Aware Actor-Critic with Function Approximation and Theoretical Guarantees »
Sharan Vaswani · Amirreza Kazemi · Reza Babanezhad Harikandeh · Nicolas Le Roux -
2020 Tutorial: (Track3) Policy Optimization in Reinforcement Learning Q&A »
Sham M Kakade · Martha White · Nicolas Le Roux -
2020 Poster: An operator view of policy gradient methods »
Dibya Ghosh · Marlos C. Machado · Nicolas Le Roux -
2019 Poster: A Geometric Perspective on Optimal Representations for Reinforcement Learning »
Marc Bellemare · Will Dabney · Robert Dadashi · Adrien Ali Taiga · Pablo Samuel Castro · Nicolas Le Roux · Dale Schuurmans · Tor Lattimore · Clare Lyle -
2019 Poster: Reducing the variance in online optimization by transporting past gradients »
Sébastien Arnold · Pierre-Antoine Manzagol · Reza Babanezhad Harikandeh · Ioannis Mitliagkas · Nicolas Le Roux -
2019 Spotlight: Reducing the variance in online optimization by transporting past gradients »
Sébastien Arnold · Pierre-Antoine Manzagol · Reza Babanezhad Harikandeh · Ioannis Mitliagkas · Nicolas Le Roux -
2018 : Poster Session 1 (note there are numerous missing names here, all papers appear in all poster sessions) »
Akhilesh Gotmare · Kenneth Holstein · Jan Brabec · Michal Uricar · Kaleigh Clary · Cynthia Rudin · Sam Witty · Andrew Ross · Shayne O'Brien · Babak Esmaeili · Jessica Forde · Massimo Caccia · Ali Emami · Scott Jordan · Bronwyn Woods · D. Sculley · Rebekah Overdorf · Nicolas Le Roux · Peter Henderson · Brandon Yang · Tzu-Yu Liu · David Jensen · Niccolo Dalmasso · Weitang Liu · Paul Marc TRICHELAIR · Jun Ki Lee · Akanksha Atrey · Matt Groh · Yotam Hechtlinger · Emma Tosch -
2014 Poster: Tight convex relaxations for sparse matrix factorization »
Emile Richard · Guillaume R Obozinski · Jean-Philippe Vert -
2012 Poster: A Stochastic Gradient Method with an Exponential Convergence
Rate for Finite Training Sets »
Nicolas Le Roux · Mark Schmidt · Francis Bach -
2012 Oral: A Stochastic Gradient Method with an Exponential Convergence
Rate for Finite Training Sets »
Nicolas Le Roux · Mark Schmidt · Francis Bach -
2011 Workshop: Learning Semantics »
Antoine Bordes · Jason E Weston · Ronan Collobert · Leon Bottou -
2011 Workshop: Deep Learning and Unsupervised Feature Learning »
Yoshua Bengio · Adam Coates · Yann LeCun · Nicolas Le Roux · Andrew Y Ng -
2011 Workshop: Sparse Representation and Low-rank Approximation »
Ameet S Talwalkar · Lester W Mackey · Mehryar Mohri · Michael W Mahoney · Francis Bach · Mike Davies · Remi Gribonval · Guillaume R Obozinski -
2011 Poster: Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization »
Mark Schmidt · Nicolas Le Roux · Francis Bach -
2011 Oral: Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization »
Mark Schmidt · Nicolas Le Roux · Francis Bach -
2011 Poster: Trace Lasso: a trace norm regularization for correlated designs »
Edouard Grave · Guillaume R Obozinski · Francis Bach -
2010 Poster: Network Flow Algorithms for Structured Sparsity »
Julien Mairal · Rodolphe Jenatton · Guillaume R Obozinski · Francis Bach -
2008 Poster: High-dimensional union support recovery in multivariate regression »
Guillaume R Obozinski · Martin J Wainwright · Michael Jordan -
2008 Spotlight: High-dimensional union support recovery in multivariate regression »
Guillaume R Obozinski · Martin J Wainwright · Michael Jordan -
2007 Poster: Learning the 2-D Topology of Images »
Nicolas Le Roux · Yoshua Bengio · Pascal Lamblin · Marc Joliveau · Balázs Kégl -
2007 Poster: Topmoumoute Online Natural Gradient Algorithm »
Nicolas Le Roux · Pierre-Antoine Manzagol · Yoshua Bengio