Timezone: »

Sparse Approximate Manifolds for Differential Geometric MCMC
Ben Calderhead · Matyas A Sustik

Mon Dec 03 07:00 PM -- 12:00 AM (PST) @ Harrah’s Special Events Center 2nd Floor

One of the enduring challenges in Markov chain Monte Carlo methodology is the development of proposal mechanisms to make moves distant from the current point, that are accepted with high probability and at low computational cost. The recent introduction of locally adaptive MCMC methods based on the natural underlying Riemannian geometry of such models goes some way to alleviating these problems for certain classes of models for which the metric tensor is analytically tractable, however computational efficiency is not assured due to the necessity of potentially high-dimensional matrix operations at each iteration. In this paper we firstly investigate a sampling-based approach for approximating the metric tensor and suggest a valid MCMC algorithm that extends the applicability of Riemannian Manifold MCMC methods to statistical models that do not admit an analytically computable metric tensor. Secondly, we show how the approximation scheme we consider naturally motivates the use of l1 regularisation to improve estimates and obtain a sparse approximate inverse of the metric, which enables stable and sparse approximations of the local geometry to be made. We demonstrate the application of this algorithm for inferring the parameters of a realistic system of ordinary differential equations using a biologically motivated robust student-t error model, for which the expected Fisher Information is analytically intractable.

Author Information

Ben Calderhead (University College London)
Matyas A Sustik (University of Texas at Austin)

More from the Same Authors