Timezone: »
In this paper, we introduce two novel metric learning algorithms, χ2-LMNN and GB-LMNN, which are explicitly designed to be non-linear and easy-to-use. The two approaches achieve this goal in fundamentally different ways: χ2-LMNN inherits the computational benefits of a linear mapping from linear metric learning, but uses a non-linear χ2-distance to explicitly capture similarities within histogram data sets; GB-LMNN applies gradient-boosting to learn non-linear mappings directly in function space and takes advantage of this approach's robustness, speed, parallelizability and insensitivity towards the single additional hyper-parameter. On various benchmark data sets, we demonstrate these methods not only match the current state-of-the-art in terms of kNN classification error, but in the case of χ2-LMNN, obtain best results in 19 out of 20 learning settings.
Author Information
Dor Kedem (Washington University in St. Louis)
Stephen Tyree (Washington University in St. Louis)
Kilian Q Weinberger (Cornell University / ASAPP Research)
Fei Sha (University of Southern California (USC))
Gert Lanckriet (U.C. San Diego)
More from the Same Authors
-
2020 Session: Orals & Spotlights Track 01: Representation/Relational »
Laurens van der Maaten · Fei Sha -
2018 Poster: Synthesize Policies for Transfer and Adaptation across Tasks and Environments »
Hexiang Hu · Liyu Chen · Boqing Gong · Fei Sha -
2018 Spotlight: Synthesize Policies for Transfer and Adaptation across Tasks and Environments »
Hexiang Hu · Liyu Chen · Boqing Gong · Fei Sha -
2017 Workshop: Optimal Transport and Machine Learning »
Olivier Bousquet · Marco Cuturi · Gabriel Peyré · Fei Sha · Justin Solomon -
2017 Poster: An Empirical Study on The Properties of Random Bases for Kernel Methods »
Maximilian Alber · Pieter-Jan Kindermans · Kristof Schütt · Klaus-Robert Müller · Fei Sha -
2015 : Do Shallow Kernel Methods Match Deep Neural Networks »
Fei Sha -
2015 : Do Shallow Kernel Methods Match Deep Neural Networks? »
Fei Sha -
2015 Poster: Fast Distributed k-Center Clustering with Outliers on Massive Data »
Gustavo Malkomes · Matt J Kusner · Wenlin Chen · Kilian Q Weinberger · Benjamin Moseley -
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2014 Poster: Diverse Sequential Subset Selection for Supervised Video Summarization »
Boqing Gong · Wei-Lun Chao · Kristen Grauman · Fei Sha -
2013 Workshop: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks »
Urun Dogan · Marius Kloft · Tatiana Tommasi · Francesco Orabona · Massimiliano Pontil · Sinno Jialin Pan · Shai Ben-David · Arthur Gretton · Fei Sha · Marco Signoretto · Rajhans Samdani · Yun-Qian Miao · Mohammad Gheshlaghi azar · Ruth Urner · Christoph Lampert · Jonathan How -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2013 Poster: Reshaping Visual Datasets for Domain Adaptation »
Boqing Gong · Kristen Grauman · Fei Sha -
2013 Poster: Similarity Component Analysis »
Soravit Changpinyo · Kuan Liu · Fei Sha -
2012 Workshop: Machine Learning Approaches to Mobile Context Awareness »
Katherine Ellis · Gert Lanckriet · Tommi Jaakkola · Lenny Grokop -
2012 Poster: The variational hierarchical EM algorithm for clustering hidden Markov models. »
Emanuele Coviello · Antoni Chan · Gert Lanckriet -
2012 Session: Oral Session 5 »
Fei Sha -
2012 Poster: Semantic Kernel Forests from Multiple Taxonomies »
Sung Ju Hwang · Kristen Grauman · Fei Sha -
2011 Workshop: Beyond Mahalanobis: Supervised Large-Scale Learning of Similarity »
Greg Shakhnarovich · Dhruv Batra · Brian Kulis · Kilian Q Weinberger -
2011 Poster: Learning a Tree of Metrics with Disjoint Visual Features »
Sung Ju Hwang · Kristen Grauman · Fei Sha -
2011 Poster: Learning in Hilbert vs. Banach Spaces: A Measure Embedding Viewpoint »
Bharath Sriperumbudur · Kenji Fukumizu · Gert Lanckriet -
2011 Poster: Co-Training for Domain Adaptation »
Minmin Chen · Kilian Q Weinberger · John Blitzer -
2010 Workshop: Challenges of Data Visualization »
Barbara Hammer · Laurens van der Maaten · Fei Sha · Alexander Smola -
2010 Session: Oral Session 16 »
Kilian Q Weinberger -
2010 Poster: Large Margin Multi-Task Metric Learning »
Shibin Parameswaran · Kilian Q Weinberger -
2010 Poster: Unsupervised Kernel Dimension Reduction »
Meihong Wang · Fei Sha · Michael Jordan -
2010 Poster: Decoding Ipsilateral Finger Movements from ECoG Signals in Humans »
Yuzong Liu · Mohit Sharma · Charles M Gaona · Jonathan D Breshears · jarod Roland · zachary V Freudenburg · Kilian Q Weinberger · Eric C Leuthardt -
2009 Workshop: Statistical Machine Learning for Visual Analytics »
Guy Lebanon · Fei Sha -
2009 Workshop: Understanding Multiple Kernel Learning Methods »
Brian McFee · Gert Lanckriet · Francis Bach · Nati Srebro -
2009 Poster: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2009 Oral: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2009 Poster: On the Convergence of the Concave-Convex Procedure »
Bharath Sriperumbudur · Gert Lanckriet -
2008 Workshop: Kernel Learning: Automatic Selection of Optimal Kernels »
Corinna Cortes · Arthur Gretton · Gert Lanckriet · Mehryar Mohri · Afshin Rostamizadeh -
2008 Poster: DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification »
Simon Lacoste-Julien · Fei Sha · Michael Jordan -
2008 Poster: Large Margin Taxonomy Embedding for Document Categorization »
Kilian Q Weinberger · Olivier Chapelle -
2008 Spotlight: Large Margin Taxonomy Embedding for Document Categorization »
Kilian Q Weinberger · Olivier Chapelle -
2008 Session: Oral session 1: Clustering »
Fei Sha -
2007 Workshop: Machine Learning for Systems Problems (Part 2) »
Archana Ganapathi · Sumit Basu · Fei Sha · Emre Kiciman -
2007 Workshop: Machine Learning for Systems Problems (Part 1) »
Archana Ganapathi · Sumit Basu · Fei Sha · Emre Kiciman -
2007 Session: Session 7: Systems and Applications »
Fei Sha -
2006 Workshop: Novel Applications of Dimensionality Reduction »
John Blitzer · Rajarshi Das · Irina Rish · Kilian Q Weinberger -
2006 Poster: Large Margin Gaussian Mixture Models for Automatic Speech Recognition »
Fei Sha · Lawrence Saul -
2006 Talk: Large Margin Gaussian Mixture Models for Automatic Speech Recognition »
Fei Sha · Lawrence Saul -
2006 Poster: Graph Regularization for Maximum Variance Unfolding with an Application to Sensor Localization »
Kilian Q Weinberger · Fei Sha · Qihui Zhu · Lawrence Saul