Timezone: »

 
Poster
A Better Way to Pre-Train Deep Boltzmann Machines
Russ Salakhutdinov · Geoffrey E Hinton

Tue Dec 04 07:00 PM -- 12:00 AM (PST) @ Harrah’s Special Events Center 2nd Floor

We describe how the pre-training algorithm for Deep Boltzmann Machines (DBMs) is related to the pre-training algorithm for Deep Belief Networks and we show that under certain conditions, the pre-training procedure improves the variational lower bound of a two-hidden-layer DBM. Based on this analysis, we develop a different method of pre-training DBMs that distributes the modelling work more evenly over the hidden layers. Our results on the MNIST and NORB datasets demonstrate that the new pre-training algorithm allows us to learn better generative models.

Author Information

Russ Salakhutdinov (Carnegie Mellon University)
Geoffrey E Hinton (Google & University of Toronto)

Geoffrey Hinton received his PhD in Artificial Intelligence from Edinburgh in 1978 and spent five years as a faculty member at Carnegie-Mellon where he pioneered back-propagation, Boltzmann machines and distributed representations of words. In 1987 he became a fellow of the Canadian Institute for Advanced Research and moved to the University of Toronto. In 1998 he founded the Gatsby Computational Neuroscience Unit at University College London, returning to the University of Toronto in 2001. His group at the University of Toronto then used deep learning to change the way speech recognition and object recognition are done. He currently splits his time between the University of Toronto and Google. In 2010 he received the NSERC Herzberg Gold Medal, Canada's top award in Science and Engineering.

More from the Same Authors