Timezone: »

 
Poster
Bayesian active learning with localized priors for fast receptive field characterization
Mijung Park · Jonathan W Pillow

Tue Dec 04 07:00 PM -- 12:00 AM (PST) @ Harrah’s Special Events Center 2nd Floor #None

Active learning can substantially improve the yield of neurophysiology experiments by adaptively selecting stimuli to probe a neuron's receptive field (RF) in real time. Bayesian active learning methods maintain a posterior distribution over the RF, and select stimuli to maximally reduce posterior entropy on each time step. However, existing methods tend to rely on simple Gaussian priors, and do not exploit uncertainty at the level of hyperparameters when determining an optimal stimulus. This uncertainty can play a substantial role in RF characterization, particularly when RFs are smooth, sparse, or local in space and time. In this paper, we describe a novel framework for active learning under hierarchical, conditionally Gaussian priors. Our algorithm uses sequential Markov Chain Monte Carlo sampling (''particle filtering'' with MCMC) over hyperparameters to construct a mixture-of-Gaussians representation of the RF posterior, and selects optimal stimuli using an approximate infomax criterion. The core elements of this algorithm are parallelizable, making it computationally efficient for real-time experiments. We apply our algorithm to simulated and real neural data, and show that it can provide highly accurate receptive field estimates from very limited data, even with a small number of hyperparameter samples.

Author Information

Mijung Park (University of Texas)
Jonathan W Pillow (UT Austin)

Jonathan Pillow is an assistant professor in Psychology and Neurobiology at the University of Texas at Austin. He graduated from the University of Arizona in 1997 with a degree in mathematics and philosophy, and was a U.S. Fulbright fellow in Morocco in 1998. He received his Ph.D. in neuroscience from NYU in 2005, and was a Royal Society postdoctoral reserach fellow at the Gatsby Computational Neuroscience Unit, UCL from 2005 to 2008. His recent work involves statistical methods for understanding the neural code in single neurons and neural populations, and his lab conducts psychophysical experiments designed to test Bayesian models of human sensory perception.

More from the Same Authors