Timezone: »
Poster
Collaborative Ranking With 17 Parameters
Maksims Volkovs · Richard Zemel
Thu Dec 06 02:00 PM -- 12:00 AM (PST) @ Harrah’s Special Events Center 2nd Floor
The primary application of collaborate filtering (CF) is to recommend a small set of items to a user, which entails ranking. Most approaches, however, formulate the CF problem as rating prediction, overlooking the ranking perspective. In this work we present a method for collaborative ranking that leverages the strengths of the two main CF approaches, neighborhood- and model-based. Our novel method is highly efficient, with only seventeen parameters to optimize and a single hyperparameter to tune, and beats the state-of-the-art collaborative ranking methods. We also show that parameters learned on one dataset yield excellent results on a very different dataset, without any retraining.
Author Information
Maksims Volkovs (University of Toronto)
Richard Zemel (Columbia University)
More from the Same Authors
-
2021 : Understanding Post-hoc Adaptation for Improving Subgroup Robustness »
David Madras · Richard Zemel -
2021 : Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data »
Sindy Löwe · David Madras · Richard Zemel · Max Welling -
2022 Poster: Implications of Model Indeterminacy for Explanations of Automated Decisions »
Marc-Etienne Brunet · Ashton Anderson · Richard Zemel -
2022 Poster: Deep Ensembles Work, But Are They Necessary? »
Taiga Abe · Estefany Kelly Buchanan · Geoff Pleiss · Richard Zemel · John Cunningham -
2021 Poster: Variational Model Inversion Attacks »
Kuan-Chieh Wang · YAN FU · Ke Li · Ashish Khisti · Richard Zemel · Alireza Makhzani -
2021 Poster: Identifying and Benchmarking Natural Out-of-Context Prediction Problems »
David Madras · Richard Zemel -
2020 : Contributed talks 5: Fairness and Robustness in Invariant Learning: A Case Study in Toxicity Classification »
Elliot Creager · David Madras · Richard Zemel -
2019 Poster: Incremental Few-Shot Learning with Attention Attractor Networks »
Mengye Ren · Renjie Liao · Ethan Fetaya · Richard Zemel -
2019 Poster: SMILe: Scalable Meta Inverse Reinforcement Learning through Context-Conditional Policies »
Kamyar Ghasemipour · Shixiang (Shane) Gu · Richard Zemel -
2019 Poster: Efficient Graph Generation with Graph Recurrent Attention Networks »
Renjie Liao · Yujia Li · Yang Song · Shenlong Wang · Will Hamilton · David Duvenaud · Raquel Urtasun · Richard Zemel -
2018 Poster: Learning Latent Subspaces in Variational Autoencoders »
Jack Klys · Jake Snell · Richard Zemel -
2018 Poster: Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer »
David Madras · Toni Pitassi · Richard Zemel -
2018 Poster: Neural Guided Constraint Logic Programming for Program Synthesis »
Lisa Zhang · Gregory Rosenblatt · Ethan Fetaya · Renjie Liao · William Byrd · Matthew Might · Raquel Urtasun · Richard Zemel -
2017 : Contributed talk: Predict Responsibly: Increasing Fairness by Learning To Defer Abstract »
David Madras · Richard Zemel · Toni Pitassi -
2017 Poster: Dualing GANs »
Yujia Li · Alex Schwing · Kuan-Chieh Wang · Richard Zemel -
2017 Poster: Causal Effect Inference with Deep Latent-Variable Models »
Christos Louizos · Uri Shalit · Joris Mooij · David Sontag · Richard Zemel · Max Welling -
2017 Spotlight: Dualing GANs »
Yujia Li · Alex Schwing · Kuan-Chieh Wang · Richard Zemel -
2017 Poster: Few-Shot Learning Through an Information Retrieval Lens »
Eleni Triantafillou · Richard Zemel · Raquel Urtasun -
2017 Poster: Prototypical Networks for Few-shot Learning »
Jake Snell · Kevin Swersky · Richard Zemel -
2016 Poster: Understanding the Effective Receptive Field in Deep Convolutional Neural Networks »
Wenjie Luo · Yujia Li · Raquel Urtasun · Richard Zemel -
2016 Poster: Learning Deep Parsimonious Representations »
Renjie Liao · Alex Schwing · Richard Zemel · Raquel Urtasun -
2015 Poster: Skip-Thought Vectors »
Jamie Kiros · Yukun Zhu · Russ Salakhutdinov · Richard Zemel · Raquel Urtasun · Antonio Torralba · Sanja Fidler -
2015 Poster: Exploring Models and Data for Image Question Answering »
Mengye Ren · Jamie Kiros · Richard Zemel -
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2014 Poster: A Multiplicative Model for Learning Distributed Text-Based Attribute Representations »
Jamie Kiros · Richard Zemel · Russ Salakhutdinov -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2013 Poster: A Determinantal Point Process Latent Variable Model for Inhibition in Neural Spiking Data »
Jasper Snoek · Richard Zemel · Ryan Adams -
2013 Poster: On the Expressive Power of Restricted Boltzmann Machines »
James Martens · Arkadev Chattopadhya · Toni Pitassi · Richard Zemel -
2012 Poster: Bayesian n-Choose-k Models for Classification and Ranking »
Kevin Swersky · Danny Tarlow · Richard Zemel · Ryan Adams · Brendan J Frey -
2012 Poster: Efficient Sampling for Bipartite Matching Problems »
Maksims Volkovs · Richard Zemel -
2012 Poster: Cardinality Restricted Boltzmann Machines »
Kevin Swersky · Danny Tarlow · Ilya Sutskever · Richard Zemel · Russ Salakhutdinov · Ryan Adams -
2010 Talk: Opening Remarks and Awards »
Richard Zemel · Terrence Sejnowski · John Shawe-Taylor -
2009 Placeholder: Opening Remarks »
Richard Zemel -
2008 Poster: Comparing model predictions of response bias and variance in cue combination »
Rama Natarajan · Iain Murray · Ladan Shams · Richard Zemel -
2008 Poster: Learning Hybrid Models for Image Annotation with Partially Labeled Data »
Xuming He · Richard Zemel -
2008 Poster: Competing RBM density models for classification of fMRI images »
Tanya Schmah · Geoffrey E Hinton · Richard Zemel