Timezone: »
We propose a novel kernel approach to dimension reduction for supervised learning: feature extraction and variable selection; the former constructs a small number of features from predictors, and the latter finds a subset of predictors. First, a method of linear feature extraction is proposed using the gradient of regression function, based on the recent development of the kernel method. In comparison with other existing methods, the proposed one has wide applicability without strong assumptions on the regressor or type of variables, and uses computationally simple eigendecomposition, thus applicable to large data sets. Second, in combination of a sparse penalty, the method is extended to variable selection, following the approach by Chen et al. (2010). Experimental results show that the proposed methods successfully find effective features and variables without parametric models.
Author Information
Kenji Fukumizu (Institute of Statistical Mathematics / Preferred Networks / RIKEN AIP)
Chenlei Leng (University of Warwick)
More from the Same Authors
-
2022 Poster: Invariance Learning based on Label Hierarchy »
Shoji Toyota · Kenji Fukumizu -
2022 Poster: Unsupervised Learning of Equivariant Structure from Sequences »
Takeru Miyato · Masanori Koyama · Kenji Fukumizu -
2020 Poster: Robust Persistence Diagrams using Reproducing Kernels »
Siddharth Vishwanath · Kenji Fukumizu · Satoshi Kuriki · Bharath Sriperumbudur -
2019 Poster: Semi-flat minima and saddle points by embedding neural networks to overparameterization »
Kenji Fukumizu · Shoichiro Yamaguchi · Yoh-ichi Mototake · Mirai Tanaka -
2019 Poster: Tree-Sliced Variants of Wasserstein Distances »
Tam Le · Makoto Yamada · Kenji Fukumizu · Marco Cuturi -
2018 Poster: Variational Learning on Aggregate Outputs with Gaussian Processes »
Ho Chung Law · Dino Sejdinovic · Ewan Cameron · Tim Lucas · Seth Flaxman · Katherine Battle · Kenji Fukumizu -
2017 : Learning on topological and geometrical structures of data. »
Kenji Fukumizu -
2017 Poster: A Linear-Time Kernel Goodness-of-Fit Test »
Wittawat Jitkrittum · Wenkai Xu · Zoltan Szabo · Kenji Fukumizu · Arthur Gretton -
2017 Oral: A Linear-Time Kernel Goodness-of-Fit Test »
Wittawat Jitkrittum · Wenkai Xu · Zoltan Szabo · Kenji Fukumizu · Arthur Gretton -
2017 Poster: Trimmed Density Ratio Estimation »
Song Liu · Akiko Takeda · Taiji Suzuki · Kenji Fukumizu -
2016 Poster: Convergence guarantees for kernel-based quadrature rules in misspecified settings »
Motonobu Kanagawa · Bharath Sriperumbudur · Kenji Fukumizu -
2012 Poster: Learning from Distributions via Support Measure Machines »
Krikamol Muandet · Kenji Fukumizu · Francesco Dinuzzo · Bernhard Schölkopf -
2012 Spotlight: Learning from Distributions via Support Measure Machines »
Krikamol Muandet · Kenji Fukumizu · Francesco Dinuzzo · Bernhard Schölkopf -
2012 Poster: Optimal kernel choice for large-scale two-sample tests »
Arthur Gretton · Bharath Sriperumbudur · Dino Sejdinovic · Heiko Strathmann · Sivaraman Balakrishnan · Massimiliano Pontil · Kenji Fukumizu -
2011 Poster: Kernel Bayes' Rule »
Kenji Fukumizu · Le Song · Arthur Gretton -
2011 Poster: Learning in Hilbert vs. Banach Spaces: A Measure Embedding Viewpoint »
Bharath Sriperumbudur · Kenji Fukumizu · Gert Lanckriet -
2009 Poster: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2009 Oral: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2009 Poster: Graph Zeta Function in the Bethe Free Energy and Loopy Belief Propagation »
Yusuke Watanabe · Kenji Fukumizu -
2009 Spotlight: Graph Zeta Function in the Bethe Free Energy and Loopy Belief Propagation »
Yusuke Watanabe · Kenji Fukumizu -
2009 Poster: A Fast, Consistent Kernel Two-Sample Test »
Arthur Gretton · Kenji Fukumizu · Zaid Harchaoui · Bharath Sriperumbudur -
2009 Spotlight: A Fast, Consistent Kernel Two-Sample Test »
Arthur Gretton · Kenji Fukumizu · Zaid Harchaoui · Bharath Sriperumbudur -
2008 Poster: Characteristic Kernels on Groups and Semigroups »
Kenji Fukumizu · Bharath Sriperumbudur · Arthur Gretton · Bernhard Schölkopf -
2008 Oral: Characteristic Kernels on Groups and Semigroups »
Kenji Fukumizu · Bharath Sriperumbudur · Arthur Gretton · Bernhard Schölkopf -
2007 Workshop: Representations and Inference on Probability Distributions »
Kenji Fukumizu · Arthur Gretton · Alexander Smola -
2007 Spotlight: Kernel Measures of Conditional Dependence »
Kenji Fukumizu · Arthur Gretton · Xiaohai Sun · Bernhard Schölkopf -
2007 Poster: Kernel Measures of Conditional Dependence »
Kenji Fukumizu · Arthur Gretton · Xiaohai Sun · Bernhard Schölkopf -
2007 Spotlight: A Kernel Statistical Test of Independence »
Arthur Gretton · Kenji Fukumizu · Choon Hui Teo · Le Song · Bernhard Schölkopf · Alexander Smola -
2007 Poster: A Kernel Statistical Test of Independence »
Arthur Gretton · Kenji Fukumizu · Choon Hui Teo · Le Song · Bernhard Schölkopf · Alexander Smola -
2006 Poster: Kernels on Structured Objects Through Nested Histograms »
Marco Cuturi · Kenji Fukumizu