Timezone: »
Linear chains and trees are basic building blocks in many applications of graphical models. Although exact inference in these models can be performed by dynamic programming, this computation can still be prohibitively expensive with non-trivial target variable domain sizes due to the quadratic dependence on this size. Standard message-passing algorithms for these problems are inefficient because they compute scores on hypotheses for which there is strong negative local evidence. For this reason there has been significant previous interest in beam search and its variants; however, these methods provide only approximate inference. This paper presents new efficient exact inference algorithms based on the combination of it column generation and pre-computed bounds on the model's cost structure. Improving worst-case performance is impossible. However, our method substantially speeds real-world, typical-case inference in chains and trees. Experiments show our method to be twice as fast as exact Viterbi for Wall Street Journal part-of-speech tagging and over thirteen times faster for a joint part-of-speed and named-entity-recognition task. Our algorithm is also extendable to new techniques for approximate inference, to faster two-best inference, and new opportunities for connections between inference and learning.
Author Information
David Belanger (Google Brain)
Alexandre T Passos (UMass Amherst)
Sebastian Riedel (UMass Amherst)
Andrew McCallum (UMass Amherst)
More from the Same Authors
-
2021 : CSFCube - A Test Collection of Computer Science Research Articles for Faceted Query by Example »
Sheshera Mysore · Tim O'Gorman · Andrew McCallum · Hamed Zamani -
2022 Poster: Modeling Transitivity and Cyclicity in Directed Graphs via Binary Code Box Embeddings »
Dongxu Zhang · Michael Boratko · Cameron Musco · Andrew McCallum -
2022 Poster: Structured Energy Network As a Loss »
Jay Yoon Lee · Dhruvesh Patel · Purujit Goyal · Wenlong Zhao · Zhiyang Xu · Andrew McCallum -
2021 Poster: Capacity and Bias of Learned Geometric Embeddings for Directed Graphs »
Michael Boratko · Dongxu Zhang · Nicholas Monath · Luke Vilnis · Kenneth L Clarkson · Andrew McCallum -
2020 Poster: Improving Local Identifiability in Probabilistic Box Embeddings »
Shib Dasgupta · Michael Boratko · Dongxu Zhang · Luke Vilnis · Xiang Li · Andrew McCallum -
2019 : Coffee Break & Poster Session 2 »
Juho Lee · Yoonho Lee · Yee Whye Teh · Raymond A. Yeh · Yuan-Ting Hu · Alex Schwing · Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Christian Bueno · Aditya Sanghi · Pradeep Kumar Jayaraman · Ignacio Arroyo-Fernández · Andrew Hryniowski · Vinayak Mathur · Sanjay Singh · Shahrzad Haddadan · Vasco Portilheiro · Luna Zhang · Mert Yuksekgonul · Jhosimar Arias Figueroa · Deepak Maurya · Balaraman Ravindran · Frank NIELSEN · Philip Pham · Justin Payan · Andrew McCallum · Jinesh Mehta · Ke SUN -
2019 : Opening Remarks »
Manzil Zaheer · Nicholas Monath · Ari Kobren · Junier Oliva · Barnabas Poczos · Ruslan Salakhutdinov · Andrew McCallum -
2019 Workshop: Sets and Partitions »
Nicholas Monath · Manzil Zaheer · Andrew McCallum · Ari Kobren · Junier Oliva · Barnabas Poczos · Ruslan Salakhutdinov -
2019 : Andrew McCallum: Learning DAGs and Trees with Box Embeddings and Hyperbolic Embeddings »
Andrew McCallum -
2019 Poster: Search-Guided, Lightly-Supervised Training of Structured Prediction Energy Networks »
Amirmohammad Rooshenas · Dongxu Zhang · Gopal Sharma · Andrew McCallum -
2018 : Contributed Work »
Thaer Moustafa Dieb · Aditya Balu · Amir H. Khasahmadi · Viraj Shah · Boris Knyazev · Payel Das · Garrett Goh · Georgy Derevyanko · Gianni De Fabritiis · Reiko Hagawa · John Ingraham · David Belanger · Jialin Song · Kim Nicoli · Miha Skalic · Michelle Wu · Niklas Gebauer · Peter Bjørn Jørgensen · Ryan-Rhys Griffiths · Shengchao Liu · Sheshera Mysore · Hai Leong Chieu · Philippe Schwaller · Bart Olsthoorn · Bianca-Cristina Cristescu · Wei-Cheng Tseng · Seongok Ryu · Iddo Drori · Kevin Yang · Soumya Sanyal · Zois Boukouvalas · Rishi Bedi · Arindam Paul · Sambuddha Ghosal · Daniil Bash · Clyde Fare · Zekun Ren · Ali Oskooei · Minn Xuan Wong · Paul Sinz · Théophile Gaudin · Wengong Jin · Paul Leu -
2018 Poster: Compact Representation of Uncertainty in Clustering »
Craig Greenberg · Nicholas Monath · Ari Kobren · Patrick Flaherty · Andrew McGregor · Andrew McCallum -
2017 : Invited Talk: "Light Supervision of Structured Prediction Energy Networks" »
Andrew McCallum -
2017 Poster: Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples »
Haw-Shiuan Chang · Erik Learned-Miller · Andrew McCallum -
2014 Workshop: 4th Workshop on Automated Knowledge Base Construction (AKBC) »
Sameer Singh · Fabian M Suchanek · Sebastian Riedel · Partha Pratim Talukdar · Kevin Murphy · Christopher Ré · William Cohen · Tom Mitchell · Andrew McCallum · Jason E Weston · Ramanathan Guha · Boyan Onyshkevych · Hoifung Poon · Oren Etzioni · Ari Kobren · Arvind Neelakantan · Peter Clark -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2011 Poster: Query-Aware MCMC »
Michael Wick · Andrew McCallum -
2009 Poster: FACTORIE: Probabilistic Programming via Imperatively Defined Factor Graphs »
Andrew McCallum · Karl Schultz · Sameer Singh -
2009 Poster: Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference »
Michael Wick · Khashayar Rohanimanesh · Sameer Singh · Andrew McCallum -
2009 Spotlight: Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference »
Michael Wick · Khashayar Rohanimanesh · Sameer Singh · Andrew McCallum -
2009 Poster: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum -
2009 Spotlight: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum