Timezone: »
Sparse linear (or generalized linear) models combine a standard likelihood function with a sparse prior on the unknown coefficients. These priors can conveniently be expressed as a maximization over zero-mean Gaussians with different variance hyperparameters. Standard MAP estimation (Type I) involves maximizing over both the hyperparameters and coefficients, while an empirical Bayesian alternative (Type II) first marginalizes the coefficients and then maximizes over the hyperparameters, leading to a tractable posterior approximation. The underlying cost functions can be related via a dual-space framework from Wipf et al. (2011), which allows both the Type I or Type II objectives to be expressed in either coefficient or hyperparmeter space. This perspective is useful because some analyses or extensions are more conducive to development in one space or the other. Herein we consider the estimation of a trade-off parameter balancing sparsity and data fit. As this parameter is effectively a variance, natural estimators exist by assessing the problem in hyperparameter (variance) space, transitioning natural ideas from Type II to solve what is much less intuitive for Type I. In contrast, for analyses of update rules and sparsity properties of local and global solutions, as well as extensions to more general likelihood models, we can leverage coefficient-space techniques developed for Type I and apply them to Type II. For example, this allows us to prove that Type II-inspired techniques can be successful recovering sparse coefficients when unfavorable restricted isometry properties (RIP) lead to failure of popular L1 reconstructions. It also facilitates the analysis of Type II when non-Gaussian likelihood models lead to intractable integrations.
Author Information
David P Wipf (AWS)
More from the Same Authors
-
2021 : A Closer Look at Distribution Shifts and Out-of-Distribution Generalization on Graphs »
Mucong Ding · Kezhi Kong · Jiuhai Chen · John Kirchenbauer · Micah Goldblum · David P Wipf · Furong Huang · Tom Goldstein -
2022 Poster: Learning Enhanced Representation for Tabular Data via Neighborhood Propagation »
Kounianhua Du · Weinan Zhang · Ruiwen Zhou · Yangkun Wang · Xilong Zhao · Jiarui Jin · Quan Gan · Zheng Zhang · David P Wipf -
2022 Spotlight: Lightning Talks 5B-3 »
Yanze Wu · Jie Xiao · Nianzu Yang · Jieyi Bi · Jian Yao · Yiting Chen · Qizhou Wang · Yangru Huang · Yongqiang Chen · Peixi Peng · Yuxin Hong · Xintao Wang · Feng Liu · Yining Ma · Qibing Ren · Xueyang Fu · Yonggang Zhang · Kaipeng Zeng · Jiahai Wang · GEN LI · Yonggang Zhang · Qitian Wu · Yifan Zhao · Chiyu Wang · Junchi Yan · Feng Wu · Yatao Bian · Xiaosong Jia · Ying Shan · Zhiguang Cao · Zheng-Jun Zha · Guangyao Chen · Tianjun Xiao · Han Yang · Jing Zhang · Jinbiao Chen · MA Kaili · Yonghong Tian · Junchi Yan · Chen Gong · Tong He · Binghui Xie · Yuan Sun · Francesco Locatello · Tongliang Liu · Yeow Meng Chee · David P Wipf · Tongliang Liu · Bo Han · Bo Han · Yanwei Fu · James Cheng · Zheng Zhang -
2022 Spotlight: Self-supervised Amodal Video Object Segmentation »
Jian Yao · Yuxin Hong · Chiyu Wang · Tianjun Xiao · Tong He · Francesco Locatello · David P Wipf · Yanwei Fu · Zheng Zhang -
2022 Spotlight: NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification »
Qitian Wu · Wentao Zhao · Zenan Li · David P Wipf · Junchi Yan -
2022 Spotlight: Lightning Talks 1B-1 »
Qitian Wu · Runlin Lei · Rongqin Chen · Luca Pinchetti · Yangze Zhou · Abhinav Kumar · Hans Hao-Hsun Hsu · Wentao Zhao · Chenhao Tan · Zhen Wang · Shenghui Zhang · Yuesong Shen · Tommaso Salvatori · Gitta Kutyniok · Zenan Li · Amit Sharma · Leong Hou U · Yordan Yordanov · Christian Tomani · Bruno Ribeiro · Yaliang Li · David P Wipf · Daniel Cremers · Bolin Ding · Beren Millidge · Ye Li · Yuhang Song · Junchi Yan · Zhewei Wei · Thomas Lukasiewicz -
2022 Poster: NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification »
Qitian Wu · Wentao Zhao · Zenan Li · David P Wipf · Junchi Yan -
2022 Poster: Transformers from an Optimization Perspective »
Yongyi Yang · zengfeng Huang · David P Wipf -
2022 Poster: Descent Steps of a Relation-Aware Energy Produce Heterogeneous Graph Neural Networks »
Hongjoon Ahn · Yongyi Yang · Quan Gan · Taesup Moon · David P Wipf -
2022 Poster: Self-supervised Amodal Video Object Segmentation »
Jian Yao · Yuxin Hong · Chiyu Wang · Tianjun Xiao · Tong He · Francesco Locatello · David P Wipf · Yanwei Fu · Zheng Zhang -
2022 Poster: Learning Manifold Dimensions with Conditional Variational Autoencoders »
Yijia Zheng · Tong He · Yixuan Qiu · David P Wipf -
2021 : A Closer Look at Distribution Shifts and Out-of-Distribution Generalization on Graphs »
Mucong Ding · Kezhi Kong · Jiuhai Chen · John Kirchenbauer · Micah Goldblum · David P Wipf · Furong Huang · Tom Goldstein -
2020 Poster: Further Analysis of Outlier Detection with Deep Generative Models »
Ziyu Wang · Bin Dai · David P Wipf · Jun Zhu -
2011 Poster: Sparse Estimation with Structured Dictionaries »
David P Wipf -
2011 Spotlight: Sparse Estimation with Structured Dictionaries »
David P Wipf -
2009 Poster: Sparse Estimation Using General Likelihoods and Non-Factorial Priors »
David P Wipf · Sri Nagarajan -
2008 Poster: Estimating the Location and Orientation of Complex, Correlated Neural Activity using MEG »
David P Wipf · Julia Owen · Hagai Attias · Kensuke Sekihara · Sri Nagarajan -
2008 Spotlight: Estimating the Location and Orientation of Complex, Correlated Neural Activity using MEG »
David P Wipf · Julia Owen · Hagai Attias · Kensuke Sekihara · Sri Nagarajan -
2007 Poster: A New View of Automatic Relevance Determination »
David P Wipf · Srikantan Nagarajan -
2006 Poster: Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization »
David P Wipf · Rey R Ramirez · Jason A Palmer · Scott Makeig · Bhaskar Rao -
2006 Spotlight: Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization »
David P Wipf · Rey R Ramirez · Jason A Palmer · Scott Makeig · Bhaskar Rao