Timezone: »
Given pairwise dissimilarities between data points, we consider the problem of finding a subset of data points called representatives or exemplars that can efficiently describe the data collection. We formulate the problem as a row-sparsity regularized trace minimization problem which can be solved efficiently using convex programming. The solution of the proposed optimization program finds the representatives and the probability that each data point is associated to each one of the representatives. We obtain the range of the regularization parameter for which the solution of the proposed optimization program changes from selecting one representative to selecting all data points as the representatives. When data points are distributed around multiple clusters according to the dissimilarities, we show that the data in each cluster select only representatives from that cluster. Unlike metric-based methods, our algorithm does not require that the pairwise dissimilarities be metrics and can be applied to dissimilarities that are asymmetric or violate the triangle inequality. We demonstrate the effectiveness of the proposed algorithm on synthetic data as well as real-world datasets of images and text.
Author Information
Ehsan Elhamifar (UC Berkeley)
Guillermo Sapiro (Duke University)
René Vidal (Mathematical Institute for Data Science, Johns Hopkins University, USA)
More from the Same Authors
-
2021 : Federating for Learning Group Fair Models »
Afroditi Papadaki · Natalia Martinez · Martin Bertran · Guillermo Sapiro · Miguel Rodrigues -
2021 : Distributionally Robust Group Backwards Compatibility »
Martin Bertran · Natalia Martinez · Guillermo Sapiro -
2021 : Complexity in Facial dynamics using Computer Vision as Behavioral Assessment for Autism Spectrum Disorder »
Pradeep Raj Krishnappa Babu · J. Matias Di Martino · Kimberley Carpenter · Steven Espinosa · geraldine Dawson · Guillermo Sapiro -
2022 : Improving Generalization with Physical Equations »
Antoine Wehenkel · Jens Behrmann · Hsiang Hsu · Guillermo Sapiro · Gilles Louppe · Joern-Henrik Jacobsen -
2022 : Federated Fairness without Access to Demographics »
Afroditi Papadaki · Natalia Martinez · Martin Bertran · Guillermo Sapiro · Miguel Rodrigues -
2022 : A Large-Scale Observational Study of the Causal Effects of a Behavioral Health Nudge »
Achille Nazaret · Guillermo Sapiro -
2022 : A Tale of Two Food Adventurers: The Challenges and Triumphs of Repeated Food Exposures in Avoidant/Restrictive Food Intake Disorder »
Young Kyung Kim · Juan Matias Di Martino · Julia Nicholas · Ilana Pilato · Alannah Rivera-Cancel · Julia Gianneschi · Jalisa Jackson · Ellen Mines · Nancy Zucker · Guillermo Sapiro -
2022 : Modeling Heart Rate Response to Exercise with Wearables Data »
Achille Nazaret · Sana Tonekaboni · Gregory Darnell · Shirley Ren · Guillermo Sapiro · Andrew Miller -
2020 : Lightning Talk 2: Pareto Robustness for Fairness Beyond Demographics »
Natalia Martinez · Martin Bertran · Afroditi Papadaki · Miguel Rodrigues · Guillermo Sapiro -
2019 : Keynote I – Rene Vidal (Johns Hopkins University) »
René Vidal -
2019 Poster: A Linearly Convergent Method for Non-Smooth Non-Convex Optimization on the Grassmannian with Applications to Robust Subspace and Dictionary Learning »
Zhihui Zhu · Tianyu Ding · Daniel Robinson · Manolis Tsakiris · René Vidal -
2018 : Poster Session »
Phillipp Schoppmann · Patrick Yu · Valerie Chen · Travis Dick · Marc Joye · Ningshan Zhang · Frederik Harder · Olli Saarikivi · Théo Ryffel · Yunhui Long · Théo JOURDAN · Di Wang · Antonio Marcedone · Negev Shekel Nosatzki · Yatharth A Dubey · Antti Koskela · Peter Bloem · Aleksandra Korolova · Martin Bertran · Hao Chen · Galen Andrew · Natalia Martinez · Janardhan Kulkarni · Jonathan Passerat-Palmbach · Guillermo Sapiro · Amrita Roy Chowdhury -
2018 Poster: Dual Principal Component Pursuit: Improved Analysis and Efficient Algorithms »
Zhihui Zhu · Yifan Wang · Daniel Robinson · Daniel Naiman · René Vidal · Manolis Tsakiris -
2015 : Computational discussion: Challenges in analyzing large neuroimaging datasets »
Guillermo Sapiro -
2015 Poster: Discriminative Robust Transformation Learning »
Jiaji Huang · Qiang Qiu · Guillermo Sapiro · Robert Calderbank -
2013 Poster: Robust Multimodal Graph Matching: Sparse Coding Meets Graph Matching »
Marcelo Fiori · Pablo Sprechmann · Joshua T Vogelstein · Pablo Muse · Guillermo Sapiro -
2013 Spotlight: Robust Multimodal Graph Matching: Sparse Coding Meets Graph Matching »
Marcelo Fiori · Pablo Sprechmann · Joshua T Vogelstein · Pablo Muse · Guillermo Sapiro -
2013 Poster: Supervised Sparse Analysis and Synthesis Operators »
Pablo Sprechmann · Roee Litman · Tal Ben Yakar · Alexander M Bronstein · Guillermo Sapiro -
2012 Poster: Topology Constraints in Graphical Models »
Marcelo Fiori · Pablo Muse · Guillermo Sapiro -
2011 Poster: Sparse Manifold Clustering and Embedding »
Ehsan Elhamifar · René Vidal -
2009 Poster: Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations »
Mingyuan Zhou · Haojun Chen · John Paisley · Lu Ren · Guillermo Sapiro · Lawrence Carin -
2009 Oral: Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations »
Mingyuan Zhou · Haojun Chen · John Paisley · Lu Ren · Guillermo Sapiro · Larry Carin -
2008 Poster: SDL: Supervised Dictionary Learning »
Julien Mairal · Francis Bach · Jean A Ponce · Guillermo Sapiro · Andrew Zisserman -
2006 Poster: Stratification Learning: Detecting Mixed Density and Dimensionality in High Dimensional Point Clouds »
Gloria Haro · Gregory Randall · Guillermo Sapiro -
2006 Poster: Online Clustering of Moving Subspaces »
René Vidal