Timezone: »

 
Poster
Semi-Supervised Domain Adaptation with Non-Parametric Copulas
David Lopez-Paz · José Miguel Hernández-Lobato · Bernhard Schölkopf

Tue Dec 04 07:00 PM -- 12:00 AM (PST) @ Harrah’s Special Events Center 2nd Floor

A new framework based on the theory of copulas is proposed to address semi-supervised domain adaptation problems. The presented method factorizes any multivariate density into a product of marginal distributions and bivariate copula functions. Therefore, changes in each of these factors can be detected and corrected to adapt a density model across different learning domains. Importantly, we introduce a novel vine copula model, which allows for this factorization in a non-parametric manner. Experimental results on regression problems with real-world data illustrate the efficacy of the proposed approach when compared to state-of-the-art techniques.

Author Information

David Lopez-Paz (Meta AI)
José Miguel Hernández-Lobato (University of Cambridge)
Bernhard Schölkopf (MPI for Intelligent Systems, Tübingen)

Bernhard Scholkopf received degrees in mathematics (London) and physics (Tubingen), and a doctorate in computer science from the Technical University Berlin. He has researched at AT&T Bell Labs, at GMD FIRST, Berlin, at the Australian National University, Canberra, and at Microsoft Research Cambridge (UK). In 2001, he was appointed scientific member of the Max Planck Society and director at the MPI for Biological Cybernetics; in 2010 he founded the Max Planck Institute for Intelligent Systems. For further information, see www.kyb.tuebingen.mpg.de/~bs.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors