Timezone: »
A weighted graph is used as an underlying structure of many algorithms like semi-supervised learning and spectral clustering. The edge weights are usually deter-mined by a single similarity measure, but it often hard if not impossible to capture all relevant aspects of similarity when using a single similarity measure. In par-ticular, in the case of visual object matching it is beneficial to integrate different similarity measures that focus on different visual representations. In this paper, a novel approach to integrate multiple similarity measures is pro-posed. First pairs of similarity measures are combined with a diffusion process on their tensor product graph (TPG). Hence the diffused similarity of each pair of ob-jects becomes a function of joint diffusion of the two original similarities, which in turn depends on the neighborhood structure of the TPG. We call this process Fusion with Diffusion (FD). However, a higher order graph like the TPG usually means significant increase in time complexity. This is not the case in the proposed approach. A key feature of our approach is that the time complexity of the dif-fusion on the TPG is the same as the diffusion process on each of the original graphs, Moreover, it is not necessary to explicitly construct the TPG in our frame-work. Finally all diffused pairs of similarity measures are combined as a weighted sum. We demonstrate the advantages of the proposed approach on the task of visual tracking, where different aspects of the appearance similarity between the target object in frame t and target object candidates in frame t+1 are integrated. The obtained method is tested on several challenge video sequences and the experimental results show that it outperforms state-of-the-art tracking methods.
Author Information
Yu Zhou (Huazhong University of Science and Technology)
Xiang Bai (Huazhong University of Science and Technology)
Wenyu Liu (Huazhong University of Science and Technology)
Longin Jan J Latecki (Temple University)
More from the Same Authors
-
2021 Spotlight: Bootstrap Your Object Detector via Mixed Training »
Mengde Xu · Zheng Zhang · Fangyun Wei · Yutong Lin · Yue Cao · Stephen Lin · Han Hu · Xiang Bai -
2021 : Occluded Video Instance Segmentation: Dataset and ICCV 2021 Challenge »
Jiyang Qi · Yan Gao · Yao Hu · Xinggang Wang · Xiaoyu Liu · Xiang Bai · Serge Belongie · Alan Yuille · Philip Torr · Song Bai -
2021 Poster: You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection »
Yuxin Fang · Bencheng Liao · Xinggang Wang · Jiemin Fang · Jiyang Qi · Rui Wu · Jianwei Niu · Wenyu Liu -
2021 Poster: Bootstrap Your Object Detector via Mixed Training »
Mengde Xu · Zheng Zhang · Fangyun Wei · Yutong Lin · Yue Cao · Stephen Lin · Han Hu · Xiang Bai -
2012 Poster: Clustering Aggregation as Maximum-Weight Independent Set »
Nan Li · Longin Jan J Latecki -
2011 Poster: Maximal Cliques that Satisfy Hard Constraints with Application to Deformable Object Model Learning »
Xinggang Wang · Xiang Bai · Xingwei Yang · Wenyu Liu · Longin Jan J Latecki -
2010 Poster: Robust Clustering as Ensembles of Affinity Relations »
Hairong Liu · Longin Jan J Latecki · shuicheng yan -
2008 Poster: Multiscale Random Fields with Application to Contour Grouping »
Longin Jan J Latecki · ChengEn Lu · Marc J Sobel · Xiang Bai