Timezone: »
In the superset label learning problem, each training instance provides a set of candidate labels of which one is the true label of the instance. Most approaches learn a discriminative classifier that tries to minimize an upper bound of the unobserved 0/1 loss. In this work, we propose a probabilistic model, Probabilistic Topic Coding (PTC), for the superset label learning problem. The PTC model is derived from logistic stick breaking process. It first maps the data to ``topics'', and then assigns to each topic a label drawn from a multinomial distribution. The layer of topics can capture underlying structure in the data, which is very useful when the model is weakly supervised. This advantage comes at little cost, since the model introduces few additional parameters. Experimental tests on several real-world problems with superset labels show results that are competitive or superior to the state of the art. The discovered underlying structures also provide improved explanations of the classification predictions.
Author Information
Liping Liu (Tufts University)
Thomas Dietterich (Oregon State University)
Tom Dietterich (AB Oberlin College 1977; MS University of Illinois 1979; PhD Stanford University 1984) is Professor and Director of Intelligent Systems Research at Oregon State University. Among his contributions to machine learning research are (a) the formalization of the multiple-instance problem, (b) the development of the error-correcting output coding method for multi-class prediction, (c) methods for ensemble learning, (d) the development of the MAXQ framework for hierarchical reinforcement learning, and (e) the application of gradient tree boosting to problems of structured prediction and latent variable models. Dietterich has pursued application-driven fundamental research in many areas including drug discovery, computer vision, computational sustainability, and intelligent user interfaces. Dietterich has served the machine learning community in a variety of roles including Executive Editor of the Machine Learning journal, co-founder of the Journal of Machine Learning Research, editor of the MIT Press Book Series on Adaptive Computation and Machine Learning, and editor of the Morgan-Claypool Synthesis series on Artificial Intelligence and Machine Learning. He was Program Co-Chair of AAAI-1990, Program Chair of NIPS-2000, and General Chair of NIPS-2001. He was first President of the International Machine Learning Society (the parent organization of ICML) and served a term on the NIPS Board of Trustees and the Council of AAAI.
More from the Same Authors
-
2022 : Exploiting Variable Correlation with Masked Modeling for Anomaly Detection in Time Series »
Panagiotis Lymperopoulos · Yukun Li · Liping Liu -
2023 Poster: On Separate Normalization in Self-supervised Transformers »
Xiaohui Chen · Yinkai Wang · Yuanqi Du · Soha Hassoun · Liping Liu -
2023 Poster: Unifying Predictions of Deterministic and Stochastic Physics in Mesh-reduced Space with Sequential Flow Generative Model »
Luning Sun · Xu Han · Han Gao · Jian-Xun Wang · Liping Liu -
2022 : Exploiting Variable Correlation with Masked Modeling for Anomaly Detection in Time Series »
Panagiotis Lymperopoulos · Yukun Li · Liping Liu -
2020 : Mini-panel discussion 3 - Prioritizing Real World RL Challenges »
Chelsea Finn · Thomas Dietterich · Angela Schoellig · Anca Dragan · Anusha Nagabandi · Doina Precup -
2020 : Keynote: Tom Diettrich »
Thomas Dietterich -
2019 : AI and Sustainable Development »
Fei Fang · Carla Gomes · Miguel Luengo-Oroz · Thomas Dietterich · Julien Cornebise -
2019 : Automated Quality Control for a Weather Sensor Network »
Thomas Dietterich -
2017 Poster: Context Selection for Embedding Models »
Liping Liu · Francisco Ruiz · Susan Athey · David Blei -
2016 : Automated Data Cleaning via Multi-View Anomaly Detection »
Thomas Dietterich -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2014 Workshop: From Bad Models to Good Policies (Sequential Decision Making under Uncertainty) »
Odalric-Ambrym Maillard · Timothy A Mann · Shie Mannor · Jeremie Mary · Laurent Orseau · Thomas Dietterich · Ronald Ortner · Peter Grünwald · Joelle Pineau · Raphael Fonteneau · Georgios Theocharous · Esteban D Arcaute · Christos Dimitrakakis · Nan Jiang · Doina Precup · Pierre-Luc Bacon · Marek Petrik · Aviv Tamar -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2012 Workshop: Human Computation for Science and Computational Sustainability »
Theodoros Damoulas · Thomas Dietterich · Edith Law · Serge Belongie -
2012 Invited Talk: Challenges for Machine Learning in Computational Sustainability »
Thomas Dietterich -
2011 Workshop: Machine Learning for Sustainability »
Thomas Dietterich · J. Zico Kolter · Matthew A Brown -
2011 Poster: Collective Graphical Models »
Daniel Sheldon · Thomas Dietterich -
2011 Poster: Inverting Grice's Maxims to Learn Rules from Natural Language Extractions »
M. Shahed Sorower · Thomas Dietterich · Janardhan Rao Doppa · Walker Orr · Prasad Tadepalli · Xiaoli Fern -
2009 Mini Symposium: Machine Learning for Sustainability »
J. Zico Kolter · Thomas Dietterich · Andrew Y Ng