Timezone: »
Residue-residue contact prediction is a fundamental problem in protein structure prediction. Hower, despite considerable research efforts, contact prediction methods are still largely unreliable. Here we introduce a novel deep machine-learning architecture which consists of a multidimensional stack of learning modules. For contact prediction, the idea is implemented as a three-dimensional stack of Neural Networks NN^k_{ij}, where i and j index the spatial coordinates of the contact map and k indexes ''time''. The temporal dimension is introduced to capture the fact that protein folding is not an instantaneous process, but rather a progressive refinement. Networks at level k in the stack can be trained in supervised fashion to refine the predictions produced by the previous level, hence addressing the problem of vanishing gradients, typical of deep architectures. Increased accuracy and generalization capabilities of this approach are established by rigorous comparison with other classical machine learning approaches for contact prediction. The deep approach leads to an accuracy for difficult long-range contacts of about 30%, roughly 10% above the state-of-the-art. Many variations in the architectures and the training algorithms are possible, leaving room for further improvements. Furthermore, the approach is applicable to other problems with strong underlying spatial and temporal components.
Author Information
Pietro Di Lena (UCI)
Pierre Baldi (UC Irvine)
Ken Nagata (University of California, Irvine)
Related Events (a corresponding poster, oral, or spotlight)
-
2012 Spotlight: Deep Spatio-Temporal Architectures and Learning for Protein Structure Prediction »
Thu. Dec 6th 06:26 -- 06:30 PM Room Harveys Convention Center Floor, CC
More from the Same Authors
-
2021 : Deep learning reconstruction of the neutrino energy with a shallow Askaryan detector »
Stephen McAleer · Christian Glaser · Pierre Baldi -
2021 : G-SpaNet: Generalized Permutationless Set Assignment for Particle Physics using Symmetry Preserving Attention »
Alexander Shmakov · Shih-chieh Hsu · Pierre Baldi -
2022 : Geometry-aware Autoregressive Models for Calorimeter Shower Simulations »
Junze Liu · Aishik Ghosh · Dylan Smith · Pierre Baldi · Daniel Whiteson -
2022 : Foundations of Attention Mechanisms in Deep Neural Network Architectures »
Pierre Baldi · Roman Vershynin -
2022 : Feasible Adversarial Robust Reinforcement Learning for Underspecified Environments »
JB Lanier · Stephen McAleer · Pierre Baldi · Roy Fox -
2023 Poster: End-To-End Latent Variational Diffusion Models for Inverse Problems in High Energy Physics »
Alexander Shmakov · Kevin Greif · Michael Fenton · Aishik Ghosh · Pierre Baldi · Daniel Whiteson -
2023 Poster: Language Models can Solve Computer Tasks »
Geunwoo Kim · Pierre Baldi · Stephen McAleer -
2023 Poster: AI for Interpretable Chemistry: Predicting Radical Mechanistic Pathways via Contrastive Learning »
Mohammadamin Tavakoli · Pierre Baldi · Ann Marie Carlton · Yin Ting Chiu · Alexander Shmakov · David Van Vranken -
2023 Poster: ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate models »
Sungduk Yu · Walter Hannah · Liran Peng · Jerry Lin · Mohamed Aziz Bhouri · Ritwik Gupta · Björn Lütjens · Justus C. Will · Gunnar Behrens · Nora Loose · Charles Stern · Tom Beucler · Bryce Harrop · Benjamin Hillman · Andrea Jenney · Savannah L. Ferretti · Nana Liu · Animashree Anandkumar · Noah Brenowitz · Veronika Eyring · Nicholas Geneva · Pierre Gentine · Stephan Mandt · Jaideep Pathak · Akshay Subramaniam · Carl Vondrick · Rose Yu · Laure Zanna · Ryan Abernathey · Fiaz Ahmed · David Bader · Pierre Baldi · Elizabeth Barnes · Christopher Bretherton · Julius Busecke · Peter Caldwell · Wayne Chuang · Yilun Han · YU HUANG · Fernando Iglesias-Suarez · Sanket Jantre · Karthik Kashinath · Marat Khairoutdinov · Thorsten Kurth · Nicholas Lutsko · Po-Lun Ma · Griffin Mooers · J. David Neelin · David Randall · Sara Shamekh · Mark Taylor · Nathan Urban · Janni Yuval · Guang Zhang · Tian Zheng · Mike Pritchard -
2023 Oral: ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate models »
Sungduk Yu · Walter Hannah · Liran Peng · Jerry Lin · Mohamed Aziz Bhouri · Ritwik Gupta · Björn Lütjens · Justus C. Will · Gunnar Behrens · Nora Loose · Charles Stern · Tom Beucler · Bryce Harrop · Benjamin Hillman · Andrea Jenney · Savannah L. Ferretti · Nana Liu · Animashree Anandkumar · Noah Brenowitz · Veronika Eyring · Nicholas Geneva · Pierre Gentine · Stephan Mandt · Jaideep Pathak · Akshay Subramaniam · Carl Vondrick · Rose Yu · Laure Zanna · Ryan Abernathey · Fiaz Ahmed · David Bader · Pierre Baldi · Elizabeth Barnes · Christopher Bretherton · Julius Busecke · Peter Caldwell · Wayne Chuang · Yilun Han · YU HUANG · Fernando Iglesias-Suarez · Sanket Jantre · Karthik Kashinath · Marat Khairoutdinov · Thorsten Kurth · Nicholas Lutsko · Po-Lun Ma · Griffin Mooers · J. David Neelin · David Randall · Sara Shamekh · Mark Taylor · Nathan Urban · Janni Yuval · Guang Zhang · Tian Zheng · Mike Pritchard -
2022 : Foundations of Attention Mechanisms in Deep Neural Network Architectures »
Pierre Baldi · Roman Vershynin -
2021 Poster: XDO: A Double Oracle Algorithm for Extensive-Form Games »
Stephen McAleer · JB Lanier · Kevin A Wang · Pierre Baldi · Roy Fox -
2020 Poster: Pipeline PSRO: A Scalable Approach for Finding Approximate Nash Equilibria in Large Games »
Stephen McAleer · JB Lanier · Roy Fox · Pierre Baldi -
2019 Poster: Modeling Dynamic Functional Connectivity with Latent Factor Gaussian Processes »
Lingge Li · Dustin Pluta · Babak Shahbaba · Norbert Fortin · Hernando Ombao · Pierre Baldi -
2018 Poster: On Neuronal Capacity »
Pierre Baldi · Roman Vershynin -
2018 Oral: On Neuronal Capacity »
Pierre Baldi · Roman Vershynin -
2017 : Poster session »
Abbas Zaidi · Christoph Kurz · David Heckerman · YiJyun Lin · Stefan Riezler · Ilya Shpitser · Songbai Yan · Olivier Goudet · Yash Deshpande · Judea Pearl · Jovana Mitrovic · Brian Vegetabile · Tae Hwy Lee · Karen Sachs · Karthika Mohan · Reagan Rose · Julius Ramakers · Negar Hassanpour · Pierre Baldi · Razieh Nabi · Noah Hammarlund · Eli Sherman · Carolin Lawrence · Fattaneh Jabbari · Vira Semenova · Maria Dimakopoulou · Pratik Gajane · Russell Greiner · Ilias Zadik · Alexander Blocker · Hao Xu · Tal EL HAY · Tony Jebara · Benoit Rostykus -
2014 Workshop: High-energy particle physics, machine learning, and the HiggsML data challenge (HEPML) »
Glen Cowan · Balázs Kégl · Kyle Cranmer · Gábor Melis · Tim Salimans · Vladimir Vava Gligorov · Daniel Whiteson · Lester Mackey · Wojciech Kotlowski · Roberto Díaz Morales · Pierre Baldi · Cecile Germain · David Rousseau · Isabelle Guyon · Tianqi Chen -
2014 Poster: Searching for Higgs Boson Decay Modes with Deep Learning »
Peter Sadowski · Daniel Whiteson · Pierre Baldi -
2014 Spotlight: Searching for Higgs Boson Decay Modes with Deep Learning »
Peter Sadowski · Daniel Whiteson · Pierre Baldi -
2013 Poster: Understanding Dropout »
Pierre Baldi · Peter Sadowski -
2013 Oral: Understanding Dropout »
Pierre Baldi · Peter Sadowski -
2011 Poster: A Machine Learning Approach to Predict Chemical Reactions »
Matthew A Kayala · Pierre Baldi -
2010 Workshop: Charting Chemical Space: Challenges and Opportunities for AI and Machine Learning »
Pierre Baldi · Klaus-Robert Müller · Gisbert Schneider -
2007 Poster: Mining Internet-Scale Software Repositories »
Erik Linstead · Paul Rigor · sushil bajracharya · cristina lopes · Pierre Baldi -
2006 Poster: A Scalable Machine Learning Approach to Go »
Lin Wu · Pierre Baldi -
2006 Talk: A Scalable Machine Learning Approach to Go »
Lin Wu · Pierre Baldi