Timezone: »
We present a novel approach to low-level vision problems that combines sparse coding and deep networks pre-trained with denoising auto-encoder (DA). We propose an alternative training scheme that successfully adapts DA, originally designed for unsupervised feature learning, to the tasks of image denoising and blind inpainting. Our method achieves state-of-the-art performance in the image denoising task. More importantly, in blind image inpainting task, the proposed method provides solutions to some complex problems that have not been tackled before. Specifically, we can automatically remove complex patterns like superimposed text from an image, rather than simple patterns like pixels missing at random. Moreover, the proposed method does not need the information regarding the region that requires inpainting to be given a priori. Experimental results demonstrate the effectiveness of the proposed method in the tasks of image denoising and blind inpainting. We also show that our new training scheme for DA is more effective and can improve the performance of unsupervised feature learning.
Author Information
Junyuan Xie
Linli Xu (University of Science and Tech)
Enhong Chen (University of Science and Technology of China)
More from the Same Authors
-
2022 Poster: DARE: Disentanglement-Augmented Rationale Extraction »
Linan Yue · Qi Liu · Yichao Du · Yanqing An · Li Wang · Enhong Chen -
2022 Spotlight: Lightning Talks 5B-4 »
Yuezhi Yang · Zeyu Yang · Yong Lin · Yi.shi Xu · Linan Yue · Tao Yang · Weixin Chen · Qi Liu · Jiaqi Chen · Dongsheng Wang · Baoyuan Wu · Yuwang Wang · Hao Pan · Shengyu Zhu · Zhenwei Miao · Yan Lu · Lu Tan · Bo Chen · Yichao Du · Haoqian Wang · Wei Li · Yanqing An · Ruiying Lu · Peng Cui · Nanning Zheng · Li Wang · Zhibin Duan · Xiatian Zhu · Mingyuan Zhou · Enhong Chen · Li Zhang -
2022 Spotlight: DARE: Disentanglement-Augmented Rationale Extraction »
Linan Yue · Qi Liu · Yichao Du · Yanqing An · Li Wang · Enhong Chen -
2022 Poster: Graph Convolution Network based Recommender Systems: Learning Guarantee and Item Mixture Powered Strategy »
Leyan Deng · Defu Lian · Chenwang Wu · Enhong Chen -
2022 Poster: Cache-Augmented Inbatch Importance Resampling for Training Recommender Retriever »
Jin Chen · Defu Lian · Yucheng Li · Baoyun Wang · Kai Zheng · Enhong Chen -
2022 Poster: Recommender Forest for Efficient Retrieval »
Chao Feng · Wuchao Li · Defu Lian · Zheng Liu · Enhong Chen -
2020 Poster: Semi-Supervised Neural Architecture Search »
Renqian Luo · Xu Tan · Rui Wang · Tao Qin · Enhong Chen · Tie-Yan Liu -
2020 Poster: Incorporating BERT into Parallel Sequence Decoding with Adapters »
Junliang Guo · Zhirui Zhang · Linli Xu · Hao-Ran Wei · Boxing Chen · Enhong Chen -
2020 Poster: Sampling-Decomposable Generative Adversarial Recommender »
Binbin Jin · Defu Lian · Zheng Liu · Qi Liu · Jianhui Ma · Xing Xie · Enhong Chen -
2019 Poster: Efficient Pure Exploration in Adaptive Round Model »
Tianyuan Jin · Jieming SHI · Xiaokui Xiao · Enhong Chen -
2018 Poster: Neural Architecture Optimization »
Renqian Luo · Fei Tian · Tao Qin · Enhong Chen · Tie-Yan Liu -
2010 Poster: Relaxed Clipping: A Global Training Method for Robust Regression and Classification »
Yao-Liang Yu · Min Yang · Linli Xu · Martha White · Dale Schuurmans