Timezone: »
In many practical machine learning problems, the acquisition of labeled data is often expensive and/or time consuming. This motivates us to study a problem as follows: given a label budget, how to select data points to label such that the learning performance is optimized. We propose a selective labeling method by analyzing the generalization error of Laplacian regularized Least Squares (LapRLS). In particular, we derive a deterministic generalization error bound for LapRLS trained on subsampled data, and propose to select a subset of data points to label by minimizing this upper bound. Since the minimization is a combinational problem, we relax it into continuous domain and solve it by projected gradient descent. Experiments on benchmark datasets show that the proposed method outperforms the state-of-the-art methods.
Author Information
Quanquan Gu (UCLA)
Tong Zhang (The Hong Kong University of Science and Technology)
Chris Ding (University of Texas at Arlington)
Jiawei Han (University of Illinois at Urbana-Champaign)
More from the Same Authors
-
2022 : Shift-Robust Node Classification via Graph Clustering Co-training »
Qi Zhu · Chao Zhang · Chanyoung Park · Carl Yang · Jiawei Han -
2022 Poster: Generating Training Data with Language Models: Towards Zero-Shot Language Understanding »
Yu Meng · Jiaxin Huang · Yu Zhang · Jiawei Han -
2021 Poster: Universal Graph Convolutional Networks »
Di Jin · Zhizhi Yu · Cuiying Huo · Rui Wang · Xiao Wang · Dongxiao He · Jiawei Han -
2021 Poster: Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training data »
Qi Zhu · Natalia Ponomareva · Jiawei Han · Bryan Perozzi -
2021 Poster: Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization »
Qi Zhu · Carl Yang · Yidan Xu · Haonan Wang · Chao Zhang · Jiawei Han -
2021 Poster: COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining »
Yu Meng · Chenyan Xiong · Payal Bajaj · saurabh tiwary · Paul Bennett · Jiawei Han · XIA SONG -
2017 Poster: Graph Matching via Multiplicative Update Algorithm »
Bo Jiang · Jin Tang · Chris Ding · Yihong Gong · Bin Luo -
2017 Spotlight: Graph Matching via Multiplicative Update Algorithm »
Bo Jiang · Jin Tang · Chris Ding · Yihong Gong · Bin Luo -
2016 Poster: Exact Recovery of Hard Thresholding Pursuit »
Xiaotong Yuan · Ping Li · Tong Zhang -
2016 Poster: Learning Additive Exponential Family Graphical Models via $\ell_{2,1}$-norm Regularized M-Estimation »
Xiaotong Yuan · Ping Li · Tong Zhang · Qingshan Liu · Guangcan Liu -
2015 Poster: Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling »
Zheng Qu · Peter Richtarik · Tong Zhang -
2015 Poster: Local Smoothness in Variance Reduced Optimization »
Daniel Vainsencher · Han Liu · Tong Zhang -
2015 Poster: Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding »
Rie Johnson · Tong Zhang -
2015 Spotlight: Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding »
Rie Johnson · Tong Zhang -
2014 Poster: Exclusive Feature Learning on Arbitrary Structures via $\ell_{1,2}$-norm »
Deguang Kong · Ryohei Fujimaki · Ji Liu · Feiping Nie · Chris Ding -
2014 Poster: Sparse PCA with Oracle Property »
Quanquan Gu · Zhaoran Wang · Han Liu -
2014 Poster: Robust Tensor Decomposition with Gross Corruption »
Quanquan Gu · Huan Gui · Jiawei Han -
2013 Poster: Accelerating Stochastic Gradient Descent using Predictive Variance Reduction »
Rie Johnson · Tong Zhang -
2013 Poster: Accelerated Mini-Batch Stochastic Dual Coordinate Ascent »
Shai Shalev-Shwartz · Tong Zhang -
2012 Workshop: Modern Nonparametric Methods in Machine Learning »
Sivaraman Balakrishnan · Arthur Gretton · Mladen Kolar · John Lafferty · Han Liu · Tong Zhang -
2012 Poster: Forging The Graphs: A Low Rank and Positive Semidefinite Graph Learning Approach »
Dijun Luo · Chris Ding · Heng Huang -
2011 Poster: Learning to Search Efficiently in High Dimensions »
Zhen Li · Huazhong Ning · Liangliang Cao · Tong Zhang · Yihong Gong · Thomas S Huang -
2011 Poster: Spectral Methods for Learning Multivariate Latent Tree Structure »
Anima Anandkumar · Kamalika Chaudhuri · Daniel Hsu · Sham M Kakade · Le Song · Tong Zhang -
2011 Poster: A Maximum Margin Multi-Instance Learning Framework for Image Categorization »
Hua Wang · Heng Huang · Farhad Kamangar · Feiping Nie · Chris Ding -
2011 Poster: Greedy Model Averaging »
Dong Dai · Tong Zhang -
2010 Poster: Efficient and Robust Feature Selection via Joint ℓ2,1-Norms Minimization »
Feiping Nie · Heng Huang · Xiao Cai · Chris Ding -
2010 Poster: Deep Coding Network »
Yuanqing Lin · Tong Zhang · Shenghuo Zhu · Kai Yu -
2010 Poster: Agnostic Active Learning Without Constraints »
Alina Beygelzimer · Daniel Hsu · John Langford · Tong Zhang -
2009 Poster: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2009 Poster: Nonlinear Learning using Local Coordinate Coding »
Kai Yu · Tong Zhang · Yihong Gong -
2009 Oral: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2009 Poster: Graph-based Consensus Maximization among Multiple Supervised and Unsupervised Models »
Jing Gao · Feng Liang · Wei Fan · Yizhou Sun · Jiawei Han -
2008 Poster: Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models »
Tong Zhang -
2008 Oral: Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models »
Tong Zhang -
2008 Poster: Sparse Online Learning via Truncated Gradient »
John Langford · Lihong Li · Tong Zhang -
2008 Spotlight: Sparse Online Learning via Truncated Gradient »
John Langford · Lihong Li · Tong Zhang -
2008 Poster: Multi-stage Convex Relaxation for Learning with Sparse Regularization »
Tong Zhang -
2007 Poster: A General Boosting Method and its Application to Learning Ranking Functions for Web Search »
Zhaohui Zheng · Hongyuan Zha · Tong Zhang · Olivier Chapelle · Keke Chen · Gordon Sun -
2007 Poster: The Epoch-Greedy Algorithm for Multi-armed Bandits with Side Information »
John Langford · Tong Zhang -
2006 Poster: Learning on Graph with Laplacian Regularization »
Rie Ando · Tong Zhang