Timezone: »
This paper studies a novel discriminative part-based model to represent and recognize object shapes with an “And-Or graph”. We define this model consisting of three layers: the leaf-nodes with collaborative edges for localizing local parts, the or-nodes specifying the switch of leaf-nodes, and the root-node encoding the global verification. A discriminative learning algorithm, extended from the CCCP [23], is proposed to train the model in a dynamical manner: the model structure (e.g., the configuration of the leaf-nodes associated with the or-nodes) is automatically determined with optimizing the multi-layer parameters during the iteration. The advantages of our method are two-fold. (i) The And-Or graph model enables us to handle well large intra-class variance and background clutters for object shape detection from images. (ii) The proposed learning algorithm is able to obtain the And-Or graph representation without requiring elaborate supervision and initialization. We validate the proposed method on several challenging databases (e.g., INRIA-Horse, ETHZ-Shape, and UIUC-People), and it outperforms the state-of-the-arts approaches.
Author Information
Xiaolong Wang (UC San Diego)
Liang Lin (University of California, Los Angeles)
More from the Same Authors
-
2021 : From One Hand to Multiple Hands: Imitation Learning for Dexterous Manipulation from Single-Camera Teleoperation »
Yuzhe Qin · Hao Su · Xiaolong Wang -
2021 : Vision-Guided Quadrupedal Locomotion in the Wild with Multi-Modal Delay Randomization »
Minghao Zhang · Ruihan Yang · Yuzhe Qin · Xiaolong Wang -
2021 : Learning Vision-Guided Quadrupedal Locomotion End-to-End with Cross-Modal Transformers »
Ruihan Yang · Minghao Zhang · Nicklas Hansen · Huazhe Xu · Xiaolong Wang -
2021 : Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation »
Rishabh Jangir · Nicklas Hansen · Xiaolong Wang -
2021 Poster: Stabilizing Deep Q-Learning with ConvNets and Vision Transformers under Data Augmentation »
Nicklas Hansen · Hao Su · Xiaolong Wang -
2021 Poster: Multi-Person 3D Motion Prediction with Multi-Range Transformers »
Jiashun Wang · Huazhe Xu · Medhini Narasimhan · Xiaolong Wang -
2021 Poster: NovelD: A Simple yet Effective Exploration Criterion »
Tianjun Zhang · Huazhe Xu · Xiaolong Wang · Yi Wu · Kurt Keutzer · Joseph Gonzalez · Yuandong Tian -
2021 Poster: Test-Time Personalization with a Transformer for Human Pose Estimation »
Yizhuo Li · Miao Hao · Zonglin Di · Nitesh Bharadwaj Gundavarapu · Xiaolong Wang -
2014 Poster: Deep Joint Task Learning for Generic Object Extraction »
Xiaolong Wang · Liliang Zhang · Liang Lin · Zhujin Liang · Wangmeng Zuo