Timezone: »
Poster
Approximating Concavely Parameterized Optimization Problems
Joachim Giesen · Jens K Mueller · Sören Laue · Sascha Swiercy
Tue Dec 04 07:00 PM -- 12:00 AM (PST) @ Harrah’s Special Events Center 2nd Floor
We consider an abstract class of optimization problems that are parameterized concavely in a single parameter, and show that the solution path along the parameter can always be approximated with accuracy $\varepsilon >0$ by a set of size $O(1/\sqrt{\varepsilon})$. A lower bound of size $\Omega (1/\sqrt{\varepsilon})$ shows that the upper bound is tight up to a constant factor. We also devise an algorithm that calls a step-size oracle and computes an approximate path of size $O(1/\sqrt{\varepsilon})$. Finally, we provide an implementation of the oracle for soft-margin support vector machines, and a parameterized semi-definite program for matrix completion.
Author Information
Joachim Giesen (Friedrich-Schiller-Universitat Jena)
Jens K Mueller (Friedrich Schiller University Jena)
Sören Laue (TU Kaiserslautern)
Sascha Swiercy (Friedrich-Schiller-Universität Jena)
Related Events (a corresponding poster, oral, or spotlight)
-
2012 Oral: Approximating Concavely Parameterized Optimization Problems »
Tue. Dec 4th 11:10 -- 11:30 PM Room Harveys Convention Center Floor, CC
More from the Same Authors
-
2022 Poster: Convexity Certificates from Hessians »
Julien Klaus · Niklas Merk · Konstantin Wiedom · Sören Laue · Joachim Giesen -
2019 : Posters and Coffee »
Sameer Kumar · Tomasz Kornuta · Oleg Bakhteev · Hui Guan · Xiaomeng Dong · Minsik Cho · Sören Laue · Theodoros Vasiloudis · Andreea Anghel · Erik Wijmans · Zeyuan Shang · Oleksii Kuchaiev · Ji Lin · Susan Zhang · Ligeng Zhu · Beidi Chen · Vinu Joseph · Jialin Ding · Jonathan Raiman · Ahnjae Shin · Vithursan Thangarasa · Anush Sankaran · Akhil Mathur · Martino Dazzi · Markus Löning · Darryl Ho · Emanuel Zgraggen · Supun Nakandala · Tomasz Kornuta · Rita Kuznetsova -
2019 Poster: GENO -- GENeric Optimization for Classical Machine Learning »
Sören Laue · Matthias Mitterreiter · Joachim Giesen -
2019 Demonstration: GENO -- Optimization for Classical Machine Learning Made Fast and Easy »
Sören Laue · Matthias Mitterreiter · Joachim Giesen -
2018 Poster: Computing Higher Order Derivatives of Matrix and Tensor Expressions »
Sören Laue · Matthias Mitterreiter · Joachim Giesen -
2017 Demonstration: Matrix Calculus -- The Power of Symbolic Differentiation »
Sören Laue · Matthias Mitterreiter · Joachim Giesen