Timezone: »

 
Spotlight
Human memory search as a random walk in a semantic network
Joshua T Abbott · Joseph L Austerweil · Tom Griffiths

Wed Dec 05 11:48 AM -- 11:52 AM (PST) @ Harveys Convention Center Floor, CC

The human mind has a remarkable ability to store a vast amount of information in memory, and an even more remarkable ability to retrieve these experiences when needed. Understanding the representations and algorithms that underlie human memory search could potentially be useful in other information retrieval settings, including internet search. Psychological studies have revealed clear regularities in how people search their memory, with clusters of semantically related items tending to be retrieved together. These findings have recently been taken as evidence that human memory search is similar to animals foraging for food in patchy environments, with people making a rational decision to switch away from a cluster of related information as it becomes depleted. We demonstrate that the results that were taken as evidence for this account also emerge from a random walk on a semantic network, much like the random web surfer model used in internet search engines. This offers a simpler and more unified account of how people search their memory, postulating a single process rather than one process for exploring a cluster and one process for switching between clusters.

Author Information

Joshua T Abbott (UC Berkeley)
Joseph L Austerweil (University of Wisconsin, Madison)

As a computational cognitive psychologist, my research program explores questions at the intersection of perception and higher-level cognition. I use recent advances in statistics and computer science to formulate ideal learner models to see how they solve these problems and then test the model predictions using traditional behavioral experimentation. Ideal learner models help us understand the knowledge people use to solve problems because such knowledge must be made explicit for the ideal learner model to successfully produce human behavior. This method yields novel machine learning methods and leads to the discovery of new psychological principles.

Tom Griffiths (Princeton)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors