Timezone: »
The partition function plays a key role in probabilistic modeling including conditional random fields, graphical models, and maximum likelihood estimation. To optimize partition functions, this article introduces a quadratic variational upper bound. This inequality facilitates majorization methods: optimization of complicated functions through the iterative solution of simpler sub-problems. Such bounds remain efficient to compute even when the partition function involves a graphical model (with small tree-width) or in latent likelihood settings. For large-scale problems, low-rank versions of the bound are provided and outperform LBFGS as well as first-order methods. Several learning applications are shown and reduce to fast and convergent update rules. Experimental results show advantages over state-of-the-art optimization methods.
Author Information
Tony Jebara (Spotify)
Anna Choromanska (Columbia University)
Related Events (a corresponding poster, oral, or spotlight)
-
2012 Poster: Majorization for CRFs and Latent Likelihoods »
Thu. Dec 6th through Wed the 5th Room Harrah’s Special Events Center 2nd Floor
More from the Same Authors
-
2019 Poster: A New Distribution on the Simplex with Auto-Encoding Applications »
Andrew Stirn · Tony Jebara · David Knowles -
2015 Workshop: Learning and privacy with incomplete data and weak supervision »
Giorgio Patrini · Tony Jebara · Richard Nock · Dimitrios Kotzias · Felix Xinnan Yu -
2014 Poster: Clamping Variables and Approximate Inference »
Adrian Weller · Tony Jebara -
2014 Poster: Making Pairwise Binary Graphical Models Attractive »
Nicholas Ruozzi · Tony Jebara -
2014 Spotlight: Making Pairwise Binary Graphical Models Attractive »
Nicholas Ruozzi · Tony Jebara -
2014 Oral: Clamping Variables and Approximate Inference »
Adrian Weller · Tony Jebara -
2013 Poster: A multi-agent control framework for co-adaptation in brain-computer interfaces »
Josh S Merel · Roy Fox · Tony Jebara · Liam Paninski -
2013 Poster: Adaptive Anonymity via $b$-Matching »
Krzysztof M Choromanski · Tony Jebara · Kui Tang -
2013 Spotlight: Adaptive Anonymity via $b$-Matching »
Krzysztof M Choromanski · Tony Jebara · Kui Tang -
2012 Workshop: Log-Linear Models »
Dimitri Kanevsky · Tony Jebara · Li Deng · Stephen Wright · Georg Heigold · Avishy Carmi -
2011 Poster: Variance Penalizing AdaBoost »
Pannagadatta K Shivaswamy · Tony Jebara -
2011 Poster: Learning a Distance Metric from a Network »
Blake Shaw · Bert Huang · Tony Jebara -
2008 Workshop: Analyzing Graphs: Theory and Applications »
Edo M Airoldi · David Blei · Jake M Hofman · Tony Jebara · Eric Xing -
2008 Poster: Relative Margin Machines »
Pannagadatta K Shivaswamy · Tony Jebara -
2008 Session: Oral session 8: Physics and High Order Statistics »
Tony Jebara -
2007 Poster: Density Estimation under Independent Similarly Distributed Sampling Assumptions »
Tony Jebara · Yingbo Song · Kapil Thadani -
2007 Spotlight: Density Estimation under Independent Similarly Distributed Sampling Assumptions »
Tony Jebara · Yingbo Song · Kapil Thadani -
2007 Spotlight: Learning Monotonic Transformations for Classification »
Andrew G Howard · Tony Jebara -
2007 Poster: Learning Monotonic Transformations for Classification »
Andrew G Howard · Tony Jebara -
2006 Poster: An EM Algorithm for Localizing Multiple Sound Sources in Reverberant Environments »
Michael Mandel · Daniel P Ellis · Tony Jebara -
2006 Poster: Gaussian and Wishart Hyperkernels »
Risi Kondor · Tony Jebara