Timezone: »
We show a principled way of deriving online learning algorithms from a minimax analysis. Various upper bounds on the minimax value, previously thought to be non-constructive, are shown to yield algorithms. This allows us to seamlessly recover known methods and to derive new ones, also capturing such ''unorthodox'' methods as Follow the Perturbed Leader and the R^2 forecaster. Understanding the inherent complexity of the learning problem thus leads to the development of algorithms. To illustrate our approach, we present several new algorithms, including a family of randomized methods that use the idea of a ''random play out''. New versions of the Follow-the-Perturbed-Leader algorithms are presented, as well as methods based on the Littlestone's dimension, efficient methods for matrix completion with trace norm, and algorithms for the problems of transductive learning and prediction with static experts.
Author Information
Sasha Rakhlin (University of Pennsylvania)
Ohad Shamir (Weizmann Institute of Science)
Karthik Sridharan (University of Pennsylvania)
Related Events (a corresponding poster, oral, or spotlight)
-
2012 Poster: Relax and Randomize : From Value to Algorithms »
Thu. Dec 6th through Wed the 5th Room Harrah’s Special Events Center 2nd Floor
More from the Same Authors
-
2016 Workshop: Time Series Workshop »
Oren Anava · Marco Cuturi · Azadeh Khaleghi · Vitaly Kuznetsov · Sasha Rakhlin -
2015 Workshop: Time Series Workshop »
Oren Anava · Azadeh Khaleghi · Vitaly Kuznetsov · Alexander Rakhlin -
2015 Poster: Adaptive Online Learning »
Dylan Foster · Alexander Rakhlin · Karthik Sridharan -
2015 Spotlight: Adaptive Online Learning »
Dylan Foster · Alexander Rakhlin · Karthik Sridharan -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2013 Workshop: Learning Faster From Easy Data »
Peter Grünwald · Wouter M Koolen · Sasha Rakhlin · Nati Srebro · Alekh Agarwal · Karthik Sridharan · Tim van Erven · Sebastien Bubeck -
2013 Workshop: Perturbations, Optimization, and Statistics »
Tamir Hazan · George Papandreou · Sasha Rakhlin · Danny Tarlow -
2013 Poster: Optimization, Learning, and Games with Predictable Sequences »
Sasha Rakhlin · Karthik Sridharan -
2013 Poster: Online Learning of Dynamic Parameters in Social Networks »
Shahin Shahrampour · Sasha Rakhlin · Ali Jadbabaie -
2011 Workshop: Computational Trade-offs in Statistical Learning »
Alekh Agarwal · Sasha Rakhlin -
2011 Session: Oral Session 12 »
Sasha Rakhlin -
2011 Poster: Efficient Online Learning via Randomized Rounding »
Nicolò Cesa-Bianchi · Ohad Shamir -
2011 Poster: From Bandits to Experts: On the Value of Side-Observations »
Shie Mannor · Ohad Shamir -
2011 Poster: Lower Bounds for Passive and Active Learning »
Maxim Raginsky · Sasha Rakhlin -
2011 Poster: Stochastic convex optimization with bandit feedback »
Alekh Agarwal · Dean P Foster · Daniel Hsu · Sham M Kakade · Sasha Rakhlin -
2011 Spotlight: Lower Bounds for Passive and Active Learning »
Maxim Raginsky · Sasha Rakhlin -
2011 Spotlight: From Bandits to Experts: On the Value of Side-Observations »
Shie Mannor · Ohad Shamir -
2011 Oral: Efficient Online Learning via Randomized Rounding »
Nicolò Cesa-Bianchi · Ohad Shamir -
2011 Poster: Better Mini-Batch Algorithms via Accelerated Gradient Methods »
Andrew Cotter · Ohad Shamir · Nati Srebro · Karthik Sridharan -
2011 Poster: On the Universality of Online Mirror Descent »
Nati Srebro · Karthik Sridharan · Ambuj Tewari -
2011 Poster: Efficient Learning of Generalized Linear and Single Index Models with Isotonic Regression »
Sham M Kakade · Adam Kalai · Varun Kanade · Ohad Shamir -
2011 Poster: Learning with the weighted trace-norm under arbitrary sampling distributions »
Rina Foygel · Russ Salakhutdinov · Ohad Shamir · Nati Srebro -
2011 Poster: Online Learning: Stochastic, Constrained, and Smoothed Adversaries »
Sasha Rakhlin · Karthik Sridharan · Ambuj Tewari -
2010 Poster: Random Walk Approach to Regret Minimization »
Hariharan Narayanan · Sasha Rakhlin -
2010 Oral: Online Learning: Random Averages, Combinatorial Parameters, and Learnability »
Sasha Rakhlin · Karthik Sridharan · Ambuj Tewari -
2010 Poster: Online Learning: Random Averages, Combinatorial Parameters, and Learnability »
Sasha Rakhlin · Karthik Sridharan · Ambuj Tewari -
2010 Poster: Smoothness, Low Noise and Fast Rates »
Nati Srebro · Karthik Sridharan · Ambuj Tewari -
2008 Poster: Fast Rates for Regularized Objectives »
Karthik Sridharan · Shai Shalev-Shwartz · Nati Srebro -
2008 Poster: On the Reliability of Clustering Stability in the Large Sample Regime »
Ohad Shamir · Naftali Tishby -
2008 Poster: On the Complexity of Linear Prediction: Risk Bounds, Margin Bounds, and Regularization »
Sham M Kakade · Karthik Sridharan · Ambuj Tewari -
2008 Spotlight: On the Reliability of Clustering Stability in the Large Sample Regime »
Ohad Shamir · Naftali Tishby -
2007 Oral: Cluster Stability for Finite Samples »
Ohad Shamir · Naftali Tishby -
2007 Oral: Adaptive Online Gradient Descent »
Peter Bartlett · Elad Hazan · Sasha Rakhlin -
2007 Poster: Adaptive Online Gradient Descent »
Peter Bartlett · Elad Hazan · Sasha Rakhlin -
2007 Poster: Cluster Stability for Finite Samples »
Ohad Shamir · Naftali Tishby -
2006 Poster: Stability of $K$-Means Clustering »
Sasha Rakhlin · Andrea Caponnetto