Timezone: »
Modern technology, including the World Wide Web, sensor networks, and high-throughput genetic sequencing, has completely transformed the scale and concept of data in the sciences. Data collections for a number of systems of interest have grown large and heterogeneous, and a crucial subset of the data is often represented as a collection of graphs together with node and edge attributes. Thus, the analysis and modeling of large, complex, real-world networks has become necessary in the study of phenomena across the diverse set of social, technological, and natural worlds. The aim of this workshop is to bring together researchers with these diverse sets of backgrounds and applications, as the next wave of core methodology in statistics and machine learning will have to provide theoretical and computational tools to analyze graphs in order to support scientific progress in applied domains such as social sciences, biology, medicine, neuroscience, physics, finance, and economics.
While the field remains extremely heterogeneous and diverse, there are emerging signs of convergence, maturation, and increased awareness between the disparate disciplines. One noteworthy example, arising in studies on the spread of information, is that social media researchers are beginning to use problem-specific structure to infer between social influence, homophily, and external forces -- subjects historically of intense interest amongst statisticians and social scientists. A second, more long-term example is the growing statistics literature expounding on topics popularized earlier within the physics community. Highly complex application domains, such as brain networks, are coming into the scope of the field.
Goals: The primary goal of the workshop is to become an inflection point in the maturation of social network and social media analysis, promoting greater technical sophistication and practical relevance. To accomplish this, we aim at bringing together researchers from applied disciplines such as sociology, economics, medicine and biology, together with researchers from more theoretical disciplines such as mathematics and physics, within our community of statisticians and computer scientists.
The technical focus of the workshop is the statistical, methodological and computational issues that arise when modeling and analyzing large collections of data that are largely represented as static and dynamic graphs. As the different communities use diverse ideas and mathematical tools, we seek to foster cross-disciplinary collaborations and intellectual exchange. The communities identified above all have a long-standing interest in modeling networks, and while they approach the problem from different directions, their ultimate goals are very similar.
The NIPS community serves as the perfect middle ground to enable effective communication of both applied and methodological concerns. Earlier workshops that we organized at ICML 2006 (on “Statistical Network Analysis: Models, Issues and New Directions”, in LNCS collection, vol. 4503.), and at NIPS 2008 (on "Analyzing Graphs: Theory and Applications"), were well attended, with standing audience at many talks. Since then, network modeling has grown to become a regular part of most if not all of the major conferences that are related to NIPS, and workshops held at NIPS 2009 and 2010 were large by the conference standards (100+ attendees) with overflowing attendance. This year, we are aware of a number of new compelling results and ongoing work, particularly in social media analysis, which reflect increasing sophistication and relevance of the field.
We would like to bring together a diverse set of researchers once again to assess progress and stimulate further debate, in an effort to support a continued, open, cross-disciplinary dialogue. We believe this effort will ultimately result in novel modeling approaches, and ultimately in the identification of diverse applications and open problems that may serve as guidance for future research directions.
We welcome the following types of papers:
1. Research papers that introduce new models or apply established models to novel domains,
2. Research papers that explore theoretical and computational issues, or
3. Position papers that discuss shortcomings and desiderata of current approaches, or propose new directions for future research.
We encourage authors to emphasize the role of learning and its relevance to the application domains at hand. In addition, we hope to identify current successes in the area, and will therefore consider papers that apply previously proposed models to novel domains and data sets.
Author Information
Edo M Airoldi (Harvard University)
David S Choi (Carnegie Mellon University)
Khalid El-Arini (Facebook)
Jure Leskovec (Stanford University and Pinterest)
More from the Same Authors
-
2021 : Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development »
Kexin Huang · Tianfan Fu · Wenhao Gao · Yue Zhao · Yusuf Roohani · Jure Leskovec · Connor Coley · Cao Xiao · Jimeng Sun · Marinka Zitnik -
2021 Spotlight: Combiner: Full Attention Transformer with Sparse Computation Cost »
Hongyu Ren · Hanjun Dai · Zihang Dai · Mengjiao (Sherry) Yang · Jure Leskovec · Dale Schuurmans · Bo Dai -
2021 : OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs »
Weihua Hu · Matthias Fey · Hongyu Ren · Maho Nakata · Yuxiao Dong · Jure Leskovec -
2021 : Extending the WILDS Benchmark for Unsupervised Adaptation »
Shiori Sagawa · Pang Wei Koh · Tony Lee · Irena Gao · Sang Michael Xie · Kendrick Shen · Ananya Kumar · Weihua Hu · Michihiro Yasunaga · Henrik Marklund · Sara Beery · Ian Stavness · Jure Leskovec · Kate Saenko · Tatsunori Hashimoto · Sergey Levine · Chelsea Finn · Percy Liang -
2022 : Tabular deep learning when $d \gg n$ by using an auxiliary knowledge graph »
Camilo Ruiz · Hongyu Ren · Kexin Huang · Jure Leskovec -
2022 : Learning Controllable Adaptive Simulation for Multi-scale Physics »
Tailin Wu · Takashi Maruyama · Qingqing Zhao · Gordon Wetzstein · Jure Leskovec -
2022 : Learning Efficient Hybrid Particle-continuum Representations of Non-equilibrium N-body Systems »
Tailin Wu · Michael Sun · Hsuan-Gu Chou · Pranay Reddy Samala · Sithipont Cholsaipant · Sophia Kivelson · Jacqueline Yau · Rex Ying · E. Paulo Alves · Jure Leskovec · Frederico Fiuza -
2022 : AutoTransfer: AutoML with Knowledge Transfer - An Application to Graph Neural Networks »
Kaidi Cao · Jiaxuan You · Jiaju Liu · Jure Leskovec -
2022 : Efficient Automatic Machine Learning via Design Graphs »
Shirley Wu · Jiaxuan You · Jure Leskovec · Rex Ying -
2023 Workshop: Generative AI and Biology (GenBio@NeurIPS2023) »
Minkai Xu · Regina Barzilay · Jure Leskovec · Wenxian Shi · Menghua Wu · Zhenqiao Song · Lei Li · Fan Yang · Stefano Ermon -
2023 Workshop: AI for Science: from Theory to Practice »
Yuanqi Du · Max Welling · Yoshua Bengio · Marinka Zitnik · Carla Gomes · Jure Leskovec · Maria Brbic · Wenhao Gao · Kexin Huang · Ziming Liu · Rocío Mercado · Miles Cranmer · Shengchao Liu · Lijing Wang -
2023 Workshop: New Frontiers of AI for Drug Discovery and Development »
Animashree Anandkumar · Ilija Bogunovic · Ti-chiun Chang · Quanquan Gu · Jure Leskovec · Michelle Li · Chong Liu · Nataša Tagasovska · Wei Wang -
2022 Competition: OGB-LSC 2022: A Large-Scale Challenge for ML on Graphs »
Weihua Hu · Matthias Fey · Hongyu Ren · Maho Nakata · Yuxiao Dong · Jure Leskovec -
2022 : Introduction to OGB-LSC »
Jure Leskovec -
2022 Poster: Deep Bidirectional Language-Knowledge Graph Pretraining »
Michihiro Yasunaga · Antoine Bosselut · Hongyu Ren · Xikun Zhang · Christopher D Manning · Percy Liang · Jure Leskovec -
2022 Poster: ZeroC: A Neuro-Symbolic Model for Zero-shot Concept Recognition and Acquisition at Inference Time »
Tailin Wu · Megan Tjandrasuwita · Zhengxuan Wu · Xuelin Yang · Kevin Liu · Rok Sosic · Jure Leskovec -
2022 Poster: Learning to Accelerate Partial Differential Equations via Latent Global Evolution »
Tailin Wu · Takashi Maruyama · Jure Leskovec -
2022 Poster: Few-shot Relational Reasoning via Connection Subgraph Pretraining »
Qian Huang · Hongyu Ren · Jure Leskovec -
2021 Poster: Combiner: Full Attention Transformer with Sparse Computation Cost »
Hongyu Ren · Hanjun Dai · Zihang Dai · Mengjiao (Sherry) Yang · Jure Leskovec · Dale Schuurmans · Bo Dai -
2021 Poster: Modeling Heterogeneous Hierarchies with Relation-specific Hyperbolic Cones »
Yushi Bai · Zhitao Ying · Hongyu Ren · Jure Leskovec -
2021 Poster: Neural Distance Embeddings for Biological Sequences »
Gabriele Corso · Zhitao Ying · Michal Pándy · Petar Veličković · Jure Leskovec · Pietro Liò -
2020 : Q&A #2 »
Heng Ji · Jure Leskovec · Jiajun Wu -
2020 : Invited Talk #4 »
Jure Leskovec -
2020 Poster: Open Graph Benchmark: Datasets for Machine Learning on Graphs »
Weihua Hu · Matthias Fey · Marinka Zitnik · Yuxiao Dong · Hongyu Ren · Bowen Liu · Michele Catasta · Jure Leskovec -
2020 Poster: Coresets for Robust Training of Deep Neural Networks against Noisy Labels »
Baharan Mirzasoleiman · Kaidi Cao · Jure Leskovec -
2020 Poster: Graph Information Bottleneck »
Tailin Wu · Hongyu Ren · Pan Li · Jure Leskovec -
2020 Spotlight: Open Graph Benchmark: Datasets for Machine Learning on Graphs »
Weihua Hu · Matthias Fey · Marinka Zitnik · Yuxiao Dong · Hongyu Ren · Bowen Liu · Michele Catasta · Jure Leskovec -
2020 Poster: Distance Encoding: Design Provably More Powerful Neural Networks for Graph Representation Learning »
Pan Li · Yanbang Wang · Hongwei Wang · Jure Leskovec -
2020 Poster: Handling Missing Data with Graph Representation Learning »
Jiaxuan You · Xiaobai Ma · Yi Ding · Mykel J Kochenderfer · Jure Leskovec -
2020 Poster: Design Space for Graph Neural Networks »
Jiaxuan You · Zhitao Ying · Jure Leskovec -
2020 Poster: Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs »
Hongyu Ren · Jure Leskovec -
2020 Spotlight: Design Space for Graph Neural Networks »
Jiaxuan You · Zhitao Ying · Jure Leskovec -
2019 : Presentation and Discussion: Open Graph Benchmark »
Jure Leskovec -
2019 Workshop: Graph Representation Learning »
Will Hamilton · Rianne van den Berg · Michael Bronstein · Stefanie Jegelka · Thomas Kipf · Jure Leskovec · Renjie Liao · Yizhou Sun · Petar Veličković -
2019 Poster: Hyperbolic Graph Convolutional Neural Networks »
Ines Chami · Zhitao Ying · Christopher Ré · Jure Leskovec -
2019 Poster: G2SAT: Learning to Generate SAT Formulas »
Jiaxuan You · Haoze Wu · Clark Barrett · Raghuram Ramanujan · Jure Leskovec -
2019 Poster: GNNExplainer: Generating Explanations for Graph Neural Networks »
Zhitao Ying · Dylan Bourgeois · Jiaxuan You · Marinka Zitnik · Jure Leskovec -
2018 Poster: Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation »
Jiaxuan You · Bowen Liu · Zhitao Ying · Vijay Pande · Jure Leskovec -
2018 Poster: Dynamic Network Model from Partial Observations »
Elahe Ghalebi · Baharan Mirzasoleiman · Radu Grosu · Jure Leskovec -
2018 Spotlight: Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation »
Jiaxuan You · Bowen Liu · Zhitao Ying · Vijay Pande · Jure Leskovec -
2018 Spotlight: Dynamic Network Model from Partial Observations »
Elahe Ghalebi · Baharan Mirzasoleiman · Radu Grosu · Jure Leskovec -
2018 Poster: Hierarchical Graph Representation Learning with Differentiable Pooling »
Zhitao Ying · Jiaxuan You · Christopher Morris · Xiang Ren · Will Hamilton · Jure Leskovec -
2018 Spotlight: Hierarchical Graph Representation Learning with Differentiable Pooling »
Zhitao Ying · Jiaxuan You · Christopher Morris · Xiang Ren · Will Hamilton · Jure Leskovec -
2018 Poster: Embedding Logical Queries on Knowledge Graphs »
Will Hamilton · Payal Bajaj · Marinka Zitnik · Dan Jurafsky · Jure Leskovec -
2017 : Jure Leskovec, Stanford »
Jure Leskovec -
2017 Poster: Inductive Representation Learning on Large Graphs »
Will Hamilton · Zhitao Ying · Jure Leskovec -
2016 Poster: Confusions over Time: An Interpretable Bayesian Model to Characterize Trends in Decision Making »
Himabindu Lakkaraju · Jure Leskovec -
2015 Workshop: Networks in the Social and Information Sciences »
Edo M Airoldi · David S Choi · Aaron Clauset · Johan Ugander · Panagiotis Toulis -
2015 Poster: Copula variational inference »
Dustin Tran · David Blei · Edo M Airoldi -
2014 Workshop: Networks: From Graphs to Rich Data »
Edo M Airoldi · Aaron Clauset · Johan Ugander · David S Choi · Leto Peel -
2014 Workshop: Personalization: Methods and Applications »
Yisong Yue · Khalid El-Arini · Dilan Gorur -
2013 Workshop: Frontiers of Network Analysis: Methods, Models, and Applications »
Edo M Airoldi · David S Choi · Aaron Clauset · Khalid El-Arini · Jure Leskovec -
2013 Poster: Stochastic blockmodel approximation of a graphon: Theory and consistent estimation »
Edo M Airoldi · Thiago B Costa · Stanley H Chan -
2013 Poster: Nonparametric Multi-group Membership Model for Dynamic Networks »
Myunghwan Kim · Jure Leskovec -
2012 Poster: Learning to Discover Social Circles in Ego Networks »
Julian J McAuley · Jure Leskovec -
2011 Poster: Confidence Sets for Network Structure »
David S Choi · Patrick J Wolfe · Edo M Airoldi -
2010 Workshop: Networks Across Disciplines: Theory and Applications »
Edo M Airoldi · Anna Goldenberg · Jure Leskovec · Quaid Morris -
2010 Oral: On the Convexity of Latent Social Network Inference »
Seth A Myers · Jure Leskovec -
2010 Poster: On the Convexity of Latent Social Network Inference »
Seth A Myers · Jure Leskovec -
2009 Workshop: Analyzing Networks and Learning With Graphs »
Edo M Airoldi · Jure Leskovec · Jon Kleinberg · Josh Tenenbaum -
2008 Workshop: Analyzing Graphs: Theory and Applications »
Edo M Airoldi · David Blei · Jake M Hofman · Tony Jebara · Eric Xing -
2008 Poster: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing -
2008 Spotlight: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing