Timezone: »
The ubiquity of mobile phones, packed with sensors such as accelerometers, gyroscopes, light and proximity sensors, BlueTooth and WiFi radios, GPS radios, microphones, etc., has brought increased attention to the field of mobile context awareness. This field examines problems relating to inferring some aspect of a user’s behavior, such as their activity, mood, interruptibility, situation, etc., using mobile sensors. There is a wide range of applications for context-aware devices. In the healthcare industry, for example, such devices could provide support for cognitively impaired people, provide health-care professionals with simple ways of monitoring patient activity levels during rehabilitation, and perform long-term health and fitness monitoring. In the transportation industry they could be used to predict and redirect traffic flow or to provide telematics for auto-insurers. Context awareness in smartphones can aid in automating functionality such as redirecting calls to voicemail when the user is uninterruptible, automatically updating status on social networks, etc.., and can be used to provide personalized recommendations.
Existing work in mobile context-awareness has predominantly come from researchers in the human-computer interaction community. There the focus has been on building custom sensor/hardware solutions to perform social science experiments or solve application-specific problems. The goal of this workshop is to bring the challenging inferential problems of mobile context awareness to the attention of the machine learning community. We believe these problems are fundamentally solvable. We seek to get this community excited about these problems, encourage collaboration between people with different backgrounds, explore how to integrate research efforts, and discuss where future work needs to be done. We are looking for participation both from individuals with machine learning backgrounds who may or may not have attacked context awareness problems before, and individuals with application-specific backgrounds. Although the dominant mobile sensing platform these days is the smartphone, we also welcome contributions that work with data from a variety of body-worn sensors including standalone accelerometers, GPS, microphones, EEG, ECG, etc., and custom hardware platforms that combine multiple sensors. We are particularly interested in contributions that deal with inferring context by fusing information from different sensor sources.
In particular, we would like the workshop to address the following topics:
(1) What is the best way to combine heterogeneous data from multiple sensors? Is contextual information encoded in specific correlation patterns, or is there one sensor that “says it all” for each context, and can we learn this automatically? How do we model and analyze correlations between heterogeneous data?
(2) Feature extraction: what are the features that best characterize these new sensor streams for analysis and learning? In video and speech processing, such features have emerged over the years and are now commonly accepted – are there certain features best suited for accelerometer, audio environment, and GPS data streams? Can we learn them automatically?
(3) A major part of this workshop will be dedicated to the discussion of data. The community has a great need for a shared public dataset that will allow researchers to compare algorithms and improve collaboration. In our panel discussion we will discuss issues such as creating a central data repository, common data collection apps, and unique issues with context-awareness data.
Author Information
Katherine Ellis (Amazon Music)
Gert Lanckriet (U.C. San Diego)
Tommi Jaakkola (MIT)
Tommi Jaakkola is a professor of Electrical Engineering and Computer Science at MIT. He received an M.Sc. degree in theoretical physics from Helsinki University of Technology, and Ph.D. from MIT in computational neuroscience. Following a Sloan postdoctoral fellowship in computational molecular biology, he joined the MIT faculty in 1998. His research interests include statistical inference, graphical models, and large scale modern estimation problems with predominantly incomplete data.
Lenny Grokop (Qualcomm)
More from the Same Authors
-
2021 Spotlight: GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles »
Octavian Ganea · Lagnajit Pattanaik · Connor Coley · Regina Barzilay · Klavs Jensen · William Green · Tommi Jaakkola -
2021 : Consistent Accelerated Inference via Confident Adaptive Transformers »
Tal Schuster · Adam Fisch · Tommi Jaakkola · Regina Barzilay -
2021 : Fragment-Based Sequential Translation for Molecular Optimization »
Benson Chen · Xiang Fu · Regina Barzilay · Tommi Jaakkola -
2021 : Crystal Diffusion Variational Autoencoder for Periodic Material Generation »
Tian Xie · Xiang Fu · Octavian Ganea · Regina Barzilay · Tommi Jaakkola -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations »
Xiang Fu · Zhenghao Wu · Wujie Wang · Tian Xie · Sinan Keten · Rafael Gomez-Bombarelli · Tommi Jaakkola -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : Diffusion probabilistic modeling of protein backbones in 3D for the motif-scaffolding problem »
Jason Yim · Brian L Trippe · Doug Tischer · David Baker · Tamara Broderick · Regina Barzilay · Tommi Jaakkola -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : Is Conditional Generative Modeling all you need for Decision-Making? »
Anurag Ajay · Yilun Du · Abhi Gupta · Josh Tenenbaum · Tommi Jaakkola · Pulkit Agrawal -
2022 : Molecular Docking with Diffusion Generative Models »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2023 Poster: Restart Sampling for Improving Generative Processes »
Yilun Xu · Mingyang Deng · Xiang Cheng · Yonglong Tian · Ziming Liu · Tommi Jaakkola -
2023 Poster: Compositional Sculpting of Iterative Generative Processes »
Timur Garipov · Sebastiaan De Peuter · Ge Yang · Vikas Garg · Samuel Kaski · Tommi Jaakkola -
2023 Poster: Hierarchical Planning with Foundation Models »
Anurag Ajay · Seungwook Han · Yilun Du · Shuang Li · Abhi Gupta · Tommi Jaakkola · Josh Tenenbaum · Leslie Kaelbling · Akash Srivastava · Pulkit Agrawal -
2023 Poster: Fundamental Limits and Tradeoffs in Invariant Representation Learning »
Han Zhao · Chen Dan · Bryon Aragam · Tommi Jaakkola · Geoffrey Gordon · Pradeep Ravikumar -
2022 Spotlight: Poisson Flow Generative Models »
Yilun Xu · Ziming Liu · Max Tegmark · Tommi Jaakkola -
2022 Spotlight: Lightning Talks 6B-1 »
Yushun Zhang · Duc Nguyen · Jiancong Xiao · Wei Jiang · Yaohua Wang · Yilun Xu · Zhen LI · Anderson Ye Zhang · Ziming Liu · Fangyi Zhang · Gilles Stoltz · Congliang Chen · Gang Li · Yanbo Fan · Ruoyu Sun · Naichen Shi · Yibo Wang · Ming Lin · Max Tegmark · Lijun Zhang · Jue Wang · Ruoyu Sun · Tommi Jaakkola · Senzhang Wang · Zhi-Quan Luo · Xiuyu Sun · Zhi-Quan Luo · Tianbao Yang · Rong Jin -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : Invited Talk: Tommi Jaakkola »
Tommi Jaakkola -
2022 Poster: Torsional Diffusion for Molecular Conformer Generation »
Bowen Jing · Gabriele Corso · Jeffrey Chang · Regina Barzilay · Tommi Jaakkola -
2022 Poster: Poisson Flow Generative Models »
Yilun Xu · Ziming Liu · Max Tegmark · Tommi Jaakkola -
2021 : Consistent Accelerated Inference via Confident Adaptive Transformers »
Tal Schuster · Adam Fisch · Tommi Jaakkola · Regina Barzilay -
2021 Poster: Understanding Interlocking Dynamics of Cooperative Rationalization »
Mo Yu · Yang Zhang · Shiyu Chang · Tommi Jaakkola -
2021 Poster: GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles »
Octavian Ganea · Lagnajit Pattanaik · Connor Coley · Regina Barzilay · Klavs Jensen · William Green · Tommi Jaakkola -
2019 Poster: Solving graph compression via optimal transport »
Vikas Garg · Tommi Jaakkola -
2019 Poster: Generative Models for Graph-Based Protein Design »
John Ingraham · Vikas Garg · Regina Barzilay · Tommi Jaakkola -
2019 Poster: Direct Optimization through $\arg \max$ for Discrete Variational Auto-Encoder »
Guy Lorberbom · Andreea Gane · Tommi Jaakkola · Tamir Hazan -
2019 Poster: Tight Certificates of Adversarial Robustness for Randomly Smoothed Classifiers »
Guang-He Lee · Yang Yuan · Shiyu Chang · Tommi Jaakkola -
2019 Poster: A Game Theoretic Approach to Class-wise Selective Rationalization »
Shiyu Chang · Yang Zhang · Mo Yu · Tommi Jaakkola -
2018 : Invited Talk Session 3 »
Alexandre Tkatchenko · Tommi Jaakkola · Jennifer Wei -
2018 Poster: Towards Robust Interpretability with Self-Explaining Neural Networks »
David Alvarez-Melis · Tommi Jaakkola -
2017 Poster: Local Aggregative Games »
Vikas Garg · Tommi Jaakkola -
2017 Poster: Style Transfer from Non-Parallel Text by Cross-Alignment »
Tianxiao Shen · Tao Lei · Regina Barzilay · Tommi Jaakkola -
2017 Spotlight: Style Transfer from Non-parallel Text by Cross-Alignment »
Tianxiao Shen · Tao Lei · Regina Barzilay · Tommi Jaakkola -
2017 Poster: Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network »
Wengong Jin · Connor Coley · Regina Barzilay · Tommi Jaakkola -
2016 Poster: Learning Tree Structured Potential Games »
Vikas Garg · Tommi Jaakkola -
2015 Poster: From random walks to distances on unweighted graphs »
Tatsunori Hashimoto · Yi Sun · Tommi Jaakkola -
2015 Poster: Principal Differences Analysis: Interpretable Characterization of Differences between Distributions »
Jonas Mueller · Tommi Jaakkola -
2014 Poster: Controlling privacy in recommender systems »
Yu Xin · Tommi Jaakkola -
2013 Poster: Learning Efficient Random Maximum A-Posteriori Predictors with Non-Decomposable Loss Functions »
Tamir Hazan · Subhransu Maji · Joseph Keshet · Tommi Jaakkola -
2013 Poster: On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations »
Tamir Hazan · Subhransu Maji · Tommi Jaakkola -
2012 Poster: Non-linear Metric Learning »
Dor Kedem · Stephen Tyree · Kilian Q Weinberger · Fei Sha · Gert Lanckriet -
2012 Poster: The variational hierarchical EM algorithm for clustering hidden Markov models. »
Emanuele Coviello · Antoni Chan · Gert Lanckriet -
2012 Poster: Convergence Rate Analysis of MAP Coordinate Minimization Algorithms »
Ofer Meshi · Tommi Jaakkola · Amir Globerson -
2011 Poster: Learning in Hilbert vs. Banach Spaces: A Measure Embedding Viewpoint »
Bharath Sriperumbudur · Kenji Fukumizu · Gert Lanckriet -
2011 Tutorial: Linear Programming Relaxations for Graphical Models »
Amir Globerson · Tommi Jaakkola -
2010 Spotlight: More data means less inference: A pseudo-max approach to structured learning »
David Sontag · Ofer Meshi · Tommi Jaakkola · Amir Globerson -
2010 Poster: More data means less inference: A pseudo-max approach to structured learning »
David Sontag · Ofer Meshi · Tommi Jaakkola · Amir Globerson -
2009 Workshop: Understanding Multiple Kernel Learning Methods »
Brian McFee · Gert Lanckriet · Francis Bach · Nati Srebro -
2009 Poster: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2009 Oral: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2009 Poster: On the Convergence of the Concave-Convex Procedure »
Bharath Sriperumbudur · Gert Lanckriet -
2008 Workshop: Approximate inference - how far have we come? »
Amir Globerson · David Sontag · Tommi Jaakkola -
2008 Workshop: Kernel Learning: Automatic Selection of Optimal Kernels »
Corinna Cortes · Arthur Gretton · Gert Lanckriet · Mehryar Mohri · Afshin Rostamizadeh -
2008 Poster: Clusters and Coarse Partitions in LP Relaxations »
David Sontag · Amir Globerson · Tommi Jaakkola -
2008 Spotlight: Clusters and Coarse Partitions in LP Relaxations »
David Sontag · Amir Globerson · Tommi Jaakkola -
2007 Oral: New Outer Bounds on the Marginal Polytope »
David Sontag · Tommi Jaakkola -
2007 Poster: New Outer Bounds on the Marginal Polytope »
David Sontag · Tommi Jaakkola -
2007 Poster: Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations »
Amir Globerson · Tommi Jaakkola -
2006 Talk: Approximate inference using planar graph decomposition »
Amir Globerson · Tommi Jaakkola -
2006 Poster: Approximate inference using planar graph decomposition »
Amir Globerson · Tommi Jaakkola -
2006 Poster: Game Theoretic Algorithms for Protein-DNA binding »
Luis Perez-Breva · Luis E Ortiz · Chen-Hsiang Yeang · Tommi Jaakkola -
2006 Spotlight: Game Theoretic Algorithms for Protein-DNA binding »
Luis Perez-Breva · Luis E Ortiz · Chen-Hsiang Yeang · Tommi Jaakkola -
2006 Poster: Parameter Expanded Variational Bayesian Methods »
Yuan (Alan) Qi · Tommi Jaakkola