Timezone: »
Traditionally, machine learning uses numerical algorithms as tools. However, many tasks in numerics can be viewed as learning problems. As examples:
* How can optimizers learn about the objective function, and how should they update their search direction?
* How should a quadrature method estimate an integral given observations of the integrand, and where should these methods put their evaluation nodes?
* Can approximate inference techniques be applied to numerical problems?
Many such issues can be seen as special cases of decision theory, active learning, or reinforcement learning.
We invite contribution of recent results in the development and analysis of numerical analysis methods based on probability theory. This includes, but is not limited to the areas of optimization, sampling, linear algebra, quadrature and the solution of differential equations.
Submission instructions are available at http://www.probabilistic-numerics.org/Call.html.
Author Information
Philipp Hennig (University of Tübingen and MPI Tübingen)
John P Cunningham (Columbia University)
Michael A Osborne (U Oxford)
More from the Same Authors
-
2021 Spotlight: An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence »
Agustinus Kristiadi · Matthias Hein · Philipp Hennig -
2021 : Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in Deep Learning »
Runa Eschenhagen · Erik Daxberger · Philipp Hennig · Agustinus Kristiadi -
2021 : Being a Bit Frequentist Improves Bayesian Neural Networks »
Agustinus Kristiadi · Matthias Hein · Philipp Hennig -
2022 Poster: Bezier Gaussian Processes for Tall and Wide Data »
Martin Jørgensen · Michael A Osborne -
2022 Poster: Log-Linear-Time Gaussian Processes Using Binary Tree Kernels »
Michael K. Cohen · Samuel Daulton · Michael A Osborne -
2022 Poster: Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic Reparameterization »
Samuel Daulton · Xingchen Wan · David Eriksson · Maximilian Balandat · Michael A Osborne · Eytan Bakshy -
2022 Poster: Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel Recombination »
Masaki Adachi · Satoshi Hayakawa · Martin Jørgensen · Harald Oberhauser · Michael A Osborne -
2021 Poster: Laplace Redux - Effortless Bayesian Deep Learning »
Erik Daxberger · Agustinus Kristiadi · Alexander Immer · Runa Eschenhagen · Matthias Bauer · Philipp Hennig -
2021 Poster: A Probabilistic State Space Model for Joint Inference from Differential Equations and Data »
Jonathan Schmidt · Nicholas Krämer · Philipp Hennig -
2021 Poster: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations »
Tim G. J. Rudner · Cong Lu · Michael A Osborne · Yarin Gal · Yee Teh -
2021 Poster: Adversarial Attacks on Graph Classifiers via Bayesian Optimisation »
Xingchen Wan · Henry Kenlay · Robin Ru · Arno Blaas · Michael A Osborne · Xiaowen Dong -
2021 Poster: An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence »
Agustinus Kristiadi · Matthias Hein · Philipp Hennig -
2021 Poster: Linear-Time Probabilistic Solution of Boundary Value Problems »
Nicholas Krämer · Philipp Hennig -
2021 Poster: Cockpit: A Practical Debugging Tool for the Training of Deep Neural Networks »
Frank Schneider · Felix Dangel · Philipp Hennig -
2020 Poster: Gaussian Process Bandit Optimization of the Thermodynamic Variational Objective »
Vu Nguyen · Vaden Masrani · Rob Brekelmans · Michael A Osborne · Frank Wood -
2020 Poster: Bayesian Optimization for Iterative Learning »
Vu Nguyen · Sebastian Schulze · Michael A Osborne -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2016 Workshop: Optimizing the Optimizers »
Maren Mahsereci · Alex Davies · Philipp Hennig -
2016 Poster: Bayesian Optimization for Probabilistic Programs »
Thomas Rainforth · Tuan Anh Le · Jan-Willem van de Meent · Michael A Osborne · Frank Wood -
2015 Workshop: Probabilistic Integration »
Michael A Osborne · Philipp Hennig -
2015 Symposium: Algorithms Among Us: the Societal Impacts of Machine Learning »
Michael A Osborne · Adrian Weller · Murray Shanahan -
2015 Poster: Probabilistic Line Searches for Stochastic Optimization »
Maren Mahsereci · Philipp Hennig -
2015 Poster: Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees »
François-Xavier Briol · Chris Oates · Mark Girolami · Michael A Osborne -
2015 Oral: Probabilistic Line Searches for Stochastic Optimization »
Maren Mahsereci · Philipp Hennig -
2015 Spotlight: Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees »
François-Xavier Briol · Chris Oates · Mark Girolami · Michael A Osborne -
2014 Poster: Incremental Local Gaussian Regression »
Franziska Meier · Philipp Hennig · Stefan Schaal -
2014 Poster: Probabilistic ODE Solvers with Runge-Kutta Means »
Michael Schober · David Duvenaud · Philipp Hennig -
2014 Poster: Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature »
Tom Gunter · Michael A Osborne · Roman Garnett · Philipp Hennig · Stephen J Roberts -
2014 Oral: Probabilistic ODE Solvers with Runge-Kutta Means »
Michael Schober · David Duvenaud · Philipp Hennig -
2014 Poster: Clustered factor analysis of multineuronal spike data »
Lars Buesing · Timothy A Machado · John P Cunningham · Liam Paninski -
2014 Poster: Fast Kernel Learning for Multidimensional Pattern Extrapolation »
Andrew Wilson · Elad Gilboa · John P Cunningham · Arye Nehorai -
2014 Spotlight: Clustered factor analysis of multineuronal spike data »
Lars Buesing · Timothy A Machado · John P Cunningham · Liam Paninski -
2013 Workshop: Bayesian Optimization in Theory and Practice »
Matthew Hoffman · Jasper Snoek · Nando de Freitas · Michael A Osborne · Ryan Adams · Sebastien Bubeck · Philipp Hennig · Remi Munos · Andreas Krause -
2013 Poster: The Randomized Dependence Coefficient »
David Lopez-Paz · Philipp Hennig · Bernhard Schölkopf -
2012 Poster: Active Learning of Model Evidence Using Bayesian Quadrature »
Michael A Osborne · David Duvenaud · Roman Garnett · Carl Edward Rasmussen · Stephen J Roberts · Zoubin Ghahramani -
2011 Workshop: Bayesian optimization, experimental design and bandits: Theory and applications »
Nando de Freitas · Roman Garnett · Frank R Hutter · Michael A Osborne -
2011 Oral: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Dynamical segmentation of single trials from population neural data »
Biljana Petreska · Byron M Yu · John P Cunningham · Gopal Santhanam · Stephen I Ryu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Optimal Reinforcement Learning for Gaussian Systems »
Philipp Hennig -
2008 Poster: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity »
Byron M Yu · John P Cunningham · Gopal Santhanam · Stephen I Ryu · Krishna V Shenoy · Maneesh Sahani -
2007 Spotlight: Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes »
John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2007 Poster: Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes »
John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani