Timezone: »
The field of education has the potential to be transformed by the internet and intelligent computer systems. Evidence for the first stage of this transformation is abundant, from the Stanford online AI and Machine Learning courses to web sites such as Kahn Academy that offer on line lessons and drills. However, the delivery of instruction via web-connected devices is merely a precondition for what may become an even more fundamental transformation: the personalization of education.
In traditional classroom settings, teachers must divide their attention and time among many students and hence have limited ability to observe and customize instruction to individuals. Even in one-on-one tutoring sessions, teachers rely on intuition and experience to choose the material and stye of instruction that they believe would provide the greatest benefit given the student's current state of understanding.
In order both to assist human teachers in traditional classroom environments and to improve automated tutoring systems to match the capabilities of expert human tutors, one would like to develop formal approaches that can:
* exploit subtle aspects of a student's behavior---such as facial expressions, fixation sequences, response latencies, and errors---to make explicit inferences about the student's latent state of knowledge and understanding;
* leverage the latent state to design teaching policies and methodologies that will optimize the student's knowledge acquisition, retention, and understanding; and
* personalize instruction by providing material and interaction suited to the capabilities and preferences of the student.
Machine learning provides a rich set of tools, extending classical psychometric approaches, for data-driven latent state inference, policy optimization, and personalization. Years ago, it would have been difficult to obtain enough data for a machine learning approach. However, online interactions with students have become commonplace, and these interactions yield a wealth of data. The data to be mined go beyond what is typed: Cameras and microphones are ubiquitous on portable devices, allowing for the exploitation of subtle video and audio cues. Because web-based instruction offers data from a potentially vast collection of diverse learners, the population of learners should serve useful in drawing inferences about individual learners.
Mining the vast datasets on teaching and learning that emerge over the coming years may both yield important insights into effective teaching strategies and also deliver practical tools to assist both human and automated teachers.
The goal of this workshop is to bring together researchers in machine learning, data mining, and computational statistics with researchers in education, psychometrics, intelligent tutoring systems, and designers of web-based instructional software. Although a relatively young journal and conference on educational data mining has been established (educationaldatamining.org), the field hasn't had as much contact with machine learning theoreticians as one would like.
Author Information
Michael Mozer (Google Brain / U. Colorado)
javier r movellan (university of california san diego)
Robert Lindsey (Imagen Technologies)
Jacob Whitehill (University of California, San Diego)
More from the Same Authors
-
2018 Poster: Learning Deep Disentangled Embeddings With the F-Statistic Loss »
Karl Ridgeway · Michael Mozer -
2018 Poster: Adapted Deep Embeddings: A Synthesis of Methods for k-Shot Inductive Transfer Learning »
Tyler Scott · Karl Ridgeway · Michael Mozer -
2018 Poster: Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding »
Nan Rosemary Ke · Anirudh Goyal · Olexa Bilaniuk · Jonathan Binas · Michael Mozer · Chris Pal · Yoshua Bengio -
2018 Spotlight: Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding »
Nan Rosemary Ke · Anirudh Goyal · Olexa Bilaniuk · Jonathan Binas · Michael Mozer · Chris Pal · Yoshua Bengio -
2018 Spotlight: Adapted Deep Embeddings: A Synthesis of Methods for k-Shot Inductive Transfer Learning »
Tyler Scott · Karl Ridgeway · Michael Mozer -
2017 : Access consciousness and the construction of actionable representations »
Michael C Mozer -
2017 : Workshop overview »
Michael Mozer · Angela Yu · Brenden Lake -
2017 Workshop: Cognitively Informed Artificial Intelligence: Insights From Natural Intelligence »
Michael Mozer · Brenden Lake · Angela Yu -
2016 : Overcoming temptation: Incentive design for intertemporal choice »
Michael Mozer -
2016 : Opening Remarks, Invited Talk: Michael C. Mozer »
Michael Mozer -
2014 Workshop: Human Propelled Machine Learning »
Richard Baraniuk · Michael Mozer · Divyanshu Vats · Christoph Studer · Andrew E Waters · Andrew Lan -
2014 Poster: Automatic Discovery of Cognitive Skills to Improve the Prediction of Student Learning »
Robert Lindsey · Mohammad Khajah · Michael Mozer -
2013 Workshop: Crowdsourcing: Theory, Algorithms and Applications »
Jennifer Wortman Vaughan · Greg Stoddard · Chien-Ju Ho · Adish Singla · Michael Bernstein · Devavrat Shah · Arpita Ghosh · Evgeniy Gabrilovich · Denny Zhou · Nikhil Devanur · Xi Chen · Alexander Ihler · Qiang Liu · Genevieve Patterson · Ashwinkumar Badanidiyuru Varadaraja · Hossein Azari Soufiani · Jacob Whitehill -
2013 Poster: Optimizing Instructional Policies »
Robert Lindsey · Michael Mozer · William J Huggins · Harold Pashler -
2013 Oral: Optimizing Instructional Policies »
Robert Lindsey · Michael Mozer · William J Huggins · Harold Pashler -
2011 Poster: An Unsupervised Decontamination Procedure For Improving The Reliability Of Human Judgments »
Michael Mozer · Benjamin Link · Harold Pashler -
2010 Spotlight: Improving Human Judgments by Decontaminating Sequential Dependencies »
Michael Mozer · Harold Pashler · Matthew Wilder · Robert Lindsey · Matt Jones · Michael Jones -
2010 Poster: Improving Human Judgments by Decontaminating Sequential Dependencies »
Michael Mozer · Harold Pashler · Matthew Wilder · Robert Lindsey · Matt Jones · Michael Jones -
2010 Poster: An Alternative to Low-level-Sychrony-Based Methods for Speech Detection »
Paul L Ruvolo · javier r movellan -
2009 Poster: Predicting the Optimal Spacing of Study: A Multiscale Context Model of Memory »
Michael Mozer · Harold Pashler · Nicholas Cepeda · Robert Lindsey · Edward Vul -
2009 Spotlight: Predicting the Optimal Spacing of Study: A Multiscale Context Model of Memory »
Michael Mozer · Harold Pashler · Nicholas Cepeda · Robert Lindsey · Edward Vul -
2009 Poster: Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise »
Jacob Whitehill · Paul L Ruvolo · Ting-fan Wu · Jacob Bergsma · javier r movellan -
2009 Poster: Sequential effects reflect parallel learning of multiple environmental regularities »
Matthew Wilder · Matt Jones · Michael Mozer -
2008 Demonstration: Machine Perception for Human Machine Interaction »
Paul L Ruvolo · Marian S Bartlett · Nicholas J Butko · Claudia Lainscsek · Gwendolen C Littlewort · Jacob Whitehill · Tingfan Wu · javier r movellan -
2008 Poster: Optimal Response Initiation: Why Recent Experience Matters »
Matt Jones · Michael Mozer · Sachiko Kinoshita -
2008 Poster: Optimization on a Budget: A Reinforcement Learning Approach »
Paul L Ruvolo · Ian R Fasel · javier r movellan -
2008 Spotlight: Optimization on a Budget: A Reinforcement Learning Approach »
Paul L Ruvolo · Ian R Fasel · javier r movellan -
2008 Spotlight: Optimal Response Initiation: Why Recent Experience Matters »
Matt Jones · Michael Mozer · Sachiko Kinoshita -
2008 Poster: Temporal Dynamics of Cognitive Control »
Jeremy Reynolds · Michael Mozer -
2007 Spotlight: Experience-Guided Search: A Theory of Attentional Control »
Michael Mozer · David Baldwin -
2007 Poster: Experience-Guided Search: A Theory of Attentional Control »
Michael Mozer · David Baldwin -
2006 Poster: Context Effects in Category Learning: An Investigation of Four Probabilistic Models »
Michael Mozer · Michael Jones · Michael Shettel