Timezone: »
Optimization problems with discrete solutions (e.g., combinatorial optimization) are becoming increasingly important in machine learning. The core of statistical machine learning is to infer conclusions from data, and when the variables underlying the data are discrete, both the tasks of inferring the model from data, as well as performing predictions using the estimated model are discrete optimization problems. Two factors complicate matters: first, many discrete problems are in general computationally hard, and second, machine learning applications often demand solving such problems at very large scales.
The focus of this year's workshop lies on structures that enable scalability. Examples of important structures include sparse graphs, the marginal polytope, and submodularity. Which properties of the problem make it possible to still efficiently obtain exact or decent approximate solutions? What are the challenges posed by parallel and distributed processing? Which discrete problems in machine learning are in need of more scalable algorithms? How can we make discrete algorithms scalable while retaining quality? Some heuristics perform well but as of yet are devoid of a theoretical foundation; what explains such good behavior?
Author Information
Stefanie Jegelka (MIT)
Andreas Krause (ETHZ)
Jeffrey A Bilmes (University of Washington, Seattle)
Jeffrey A. Bilmes is a professor at the Department of Electrical and Computer Engineering at the University of Washington, Seattle Washington. He is also an adjunct professor in Computer Science & Engineering and the department of Linguistics. Prof. Bilmes is the founder of the MELODI (MachinE Learning for Optimization and Data Interpretation) lab here in the department. Bilmes received his Ph.D. from the Computer Science Division of the department of Electrical Engineering and Computer Science, University of California in Berkeley and a masters degree from MIT. He was also a researcher at the International Computer Science Institute, and a member of the Realization group there. Prof. Bilmes is a 2001 NSF Career award winner, a 2002 CRA Digital Government Fellow, a 2008 NAE Gilbreth Lectureship award recipient, and a 2012/2013 ISCA Distinguished Lecturer. Prof. Bilmes was, along with Andrew Ng, one of the two UAI (Conference on Uncertainty in Artificial Intelligence) program chairs (2009) and then the general chair (2010). He was also a workshop chair (2011) and the tutorials chair (2014) at NIPS/NeurIPS (Neural Information Processing Systems), and is a regular senior technical chair at NeurIPS/NIPS since then. He was an action editor for JMLR (Journal of Machine Learning Research). Prof. Bilmes's primary interests lie in statistical modeling (particularly graphical model approaches) and signal processing for pattern classification, speech recognition, language processing, bioinformatics, machine learning, submodularity in combinatorial optimization and machine learning, active and semi-supervised learning, and audio/music processing. He is particularly interested in temporal graphical models (or dynamic graphical models, which includes HMMs, DBNs, and CRFs) and ways in which to design efficient algorithms for them and design their structure so that they may perform as better structured classifiers. He also has strong interests in speech-based human-computer interfaces, the statistical properties of natural objects and natural scenes, information theory and its relation to natural computation by humans and pattern recognition by machines, and computational music processing (such as human timing subtleties). He is also quite interested in high performance computing systems, computer architecture, and software techniques to reduce power consumption. Prof. Bilmes has also pioneered (starting in 2003) the development of submodularity within machine learning, and he received a best paper award at ICML 2013, a best paper award at NIPS 2013, and a best paper award at ACMBCB in 2016, all in this area. In 2014, Prof. Bilmes also received a most influential paper in 25 years award from the International Conference on Supercomputing, given to a paper on high-performance matrix optimization. Prof. Bilmes has authored the graphical models toolkit (GMTK), a dynamic graphical-model based software system widely used in speech, language, bioinformatics, and human-activity recognition.
Pradeep Ravikumar (Carnegie Mellon University)
More from the Same Authors
-
2021 Spotlight: Constrained Robust Submodular Partitioning »
Shengjie Wang · Tianyi Zhou · Chandrashekhar Lavania · Jeff A Bilmes -
2021 Spotlight: DiBS: Differentiable Bayesian Structure Learning »
Lars Lorch · Jonas Rothfuss · Bernhard Schölkopf · Andreas Krause -
2021 : Towards Safe Global Optimality in Robot Learning with GoSafe »
Bhavya Sukhija · Matteo Turchetta · Andreas Krause · Sebastian Trimpe · Dominik Baumann -
2021 : DiBS: Differentiable Bayesian Structure Learning »
Lars Lorch · Jonas Rothfuss · Bernhard Schölkopf · Andreas Krause -
2021 : Learning Single-Cell Perturbation Responses using Neural Optimal Transport »
Charlotte Bunne · Stefan Stark · Gabriele Gut · Andreas Krause · Gunnar Rätsch · Lucas Pelkmans · Kjong Lehmann -
2022 : Active Bayesian Causal Inference »
Christian Toth · Lars Lorch · Christian Knoll · Andreas Krause · Franz Pernkopf · Robert Peharz · Julius von Kügelgen -
2022 : Active Bayesian Causal inference »
Christian Toth · Lars Lorch · Christian Knoll · Andreas Krause · Franz Pernkopf · Robert Peharz · Julius von Kügelgen -
2022 : Amortized Inference for Causal Structure Learning »
Lars Lorch · Scott Sussex · Jonas Rothfuss · Andreas Krause · Bernhard Schölkopf -
2022 : MARS: Meta-learning as score matching in the function space »
Kruno Lehman · Jonas Rothfuss · Andreas Krause -
2022 : Neural All-Pairs Shortest Path for Reinforcement Learning »
Cristina Pinneri · Georg Martius · Andreas Krause -
2023 Workshop: Adaptive Experimental Design and Active Learning in the Real World »
Willie Neiswanger · Mojmir Mutny · Ilija Bogunovic · Ava Soleimany · Zi Wang · Stefano Ermon · Andreas Krause -
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: Active Bayesian Causal Inference »
Christian Toth · Lars Lorch · Christian Knoll · Andreas Krause · Franz Pernkopf · Robert Peharz · Julius von Kügelgen -
2022 Poster: Supervised Training of Conditional Monge Maps »
Charlotte Bunne · Andreas Krause · Marco Cuturi -
2022 Poster: Near-Optimal Multi-Agent Learning for Safe Coverage Control »
Manish Prajapat · Matteo Turchetta · Melanie Zeilinger · Andreas Krause -
2022 Poster: Amortized Inference for Causal Structure Learning »
Lars Lorch · Scott Sussex · Jonas Rothfuss · Andreas Krause · Bernhard Schölkopf -
2022 Poster: Movement Penalized Bayesian Optimization with Application to Wind Energy Systems »
Shyam Sundhar Ramesh · Pier Giuseppe Sessa · Andreas Krause · Ilija Bogunovic -
2022 Poster: Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces »
Mojmir Mutny · Andreas Krause -
2022 Poster: Graph Neural Network Bandits »
Parnian Kassraie · Andreas Krause · Ilija Bogunovic -
2022 Poster: Active Bayesian Causal Inference »
Christian Toth · Lars Lorch · Christian Knoll · Andreas Krause · Franz Pernkopf · Robert Peharz · Julius von Kügelgen -
2022 Poster: A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian Process Bandits »
Ilija Bogunovic · Zihan Li · Andreas Krause · Jonathan Scarlett -
2022 Poster: Active Exploration for Inverse Reinforcement Learning »
David Lindner · Andreas Krause · Giorgia Ramponi -
2022 Poster: Retrospective Adversarial Replay for Continual Learning »
Lilly Kumari · Shengjie Wang · Tianyi Zhou · Jeff A Bilmes -
2022 Poster: Learning Long-Term Crop Management Strategies with CyclesGym »
Matteo Turchetta · Luca Corinzia · Scott Sussex · Amanda Burton · Juan Herrera · Ioannis Athanasiadis · Joachim M Buhmann · Andreas Krause -
2021 : Meta-Learning Reliable Priors in the Function Space »
Jonas Rothfuss · Dominique Heyn · jinfan Chen · Andreas Krause -
2021 Poster: Learning Graph Models for Retrosynthesis Prediction »
Vignesh Ram Somnath · Charlotte Bunne · Connor Coley · Andreas Krause · Regina Barzilay -
2021 Poster: Risk-averse Heteroscedastic Bayesian Optimization »
Anastasia Makarova · Ilnura Usmanova · Ilija Bogunovic · Andreas Krause -
2021 Poster: Hierarchical Skills for Efficient Exploration »
Jonas Gehring · Gabriel Synnaeve · Andreas Krause · Nicolas Usunier -
2021 Poster: Constrained Robust Submodular Partitioning »
Shengjie Wang · Tianyi Zhou · Chandrashekhar Lavania · Jeff A Bilmes -
2021 Poster: Multi-Scale Representation Learning on Proteins »
Vignesh Ram Somnath · Charlotte Bunne · Andreas Krause -
2021 Poster: Learning Stable Deep Dynamics Models for Partially Observed or Delayed Dynamical Systems »
Andreas Schlaginhaufen · Philippe Wenk · Andreas Krause · Florian Dorfler -
2021 Poster: Information Directed Reward Learning for Reinforcement Learning »
David Lindner · Matteo Turchetta · Sebastian Tschiatschek · Kamil Ciosek · Andreas Krause -
2021 Poster: Robust Generalization despite Distribution Shift via Minimum Discriminating Information »
Tobias Sutter · Andreas Krause · Daniel Kuhn -
2021 Poster: Near-Optimal Multi-Perturbation Experimental Design for Causal Structure Learning »
Scott Sussex · Caroline Uhler · Andreas Krause -
2021 Poster: Distributional Gradient Matching for Learning Uncertain Neural Dynamics Models »
Lenart Treven · Philippe Wenk · Florian Dorfler · Andreas Krause -
2021 Poster: Meta-Learning Reliable Priors in the Function Space »
Jonas Rothfuss · Dominique Heyn · jinfan Chen · Andreas Krause -
2021 Poster: Misspecified Gaussian Process Bandit Optimization »
Ilija Bogunovic · Andreas Krause -
2021 Poster: DiBS: Differentiable Bayesian Structure Learning »
Lars Lorch · Jonas Rothfuss · Bernhard Schölkopf · Andreas Krause -
2021 Poster: Regret Bounds for Gaussian-Process Optimization in Large Domains »
Manuel Wuethrich · Bernhard Schölkopf · Andreas Krause -
2020 : Invited speaker: Adaptive Sampling for Stochastic Risk-Averse Learning, Andreas Krause »
Andreas Krause -
2020 Session: Orals & Spotlights Track 32: Optimization »
Hamed Hassani · Jeffrey A Bilmes -
2020 Poster: Adaptive Sampling for Stochastic Risk-Averse Learning »
Sebastian Curi · Kfir Y. Levy · Stefanie Jegelka · Andreas Krause -
2020 Poster: Curriculum Learning by Dynamic Instance Hardness »
Tianyi Zhou · Shengjie Wang · Jeffrey A Bilmes -
2020 Poster: Contextual Games: Multi-Agent Learning with Side Information »
Pier Giuseppe Sessa · Ilija Bogunovic · Andreas Krause · Maryam Kamgarpour -
2020 Poster: Coresets via Bilevel Optimization for Continual Learning and Streaming »
Zalan Borsos · Mojmir Mutny · Andreas Krause -
2020 Poster: Gradient Estimation with Stochastic Softmax Tricks »
Max Paulus · Dami Choi · Danny Tarlow · Andreas Krause · Chris Maddison -
2020 Oral: Gradient Estimation with Stochastic Softmax Tricks »
Max Paulus · Dami Choi · Danny Tarlow · Andreas Krause · Chris Maddison -
2020 Poster: Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning »
Sebastian Curi · Felix Berkenkamp · Andreas Krause -
2020 Poster: Learning to Play Sequential Games versus Unknown Opponents »
Pier Giuseppe Sessa · Ilija Bogunovic · Maryam Kamgarpour · Andreas Krause -
2020 Spotlight: Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning »
Sebastian Curi · Felix Berkenkamp · Andreas Krause -
2020 Poster: Safe Reinforcement Learning via Curriculum Induction »
Matteo Turchetta · Andrey Kolobov · Shital Shah · Andreas Krause · Alekh Agarwal -
2020 Spotlight: Safe Reinforcement Learning via Curriculum Induction »
Matteo Turchetta · Andrey Kolobov · Shital Shah · Andreas Krause · Alekh Agarwal -
2019 : Jeffrey Bilmes »
Jeff A Bilmes -
2019 Poster: Efficiently Learning Fourier Sparse Set Functions »
Andisheh Amrollahi · Amir Zandieh · Michael Kapralov · Andreas Krause -
2019 Spotlight: Efficiently Learning Fourier Sparse Set Functions »
Andisheh Amrollahi · Amir Zandieh · Michael Kapralov · Andreas Krause -
2019 Poster: Stochastic Bandits with Context Distributions »
Johannes Kirschner · Andreas Krause -
2019 Poster: A Domain Agnostic Measure for Monitoring and Evaluating GANs »
Paulina Grnarova · Kfir Y. Levy · Aurelien Lucchi · Nathanael Perraudin · Ian Goodfellow · Thomas Hofmann · Andreas Krause -
2019 Poster: No-Regret Learning in Unknown Games with Correlated Payoffs »
Pier Giuseppe Sessa · Ilija Bogunovic · Maryam Kamgarpour · Andreas Krause -
2019 Poster: Teaching Multiple Concepts to a Forgetful Learner »
Anette Hunziker · Yuxin Chen · Oisin Mac Aodha · Manuel Gomez Rodriguez · Andreas Krause · Pietro Perona · Yisong Yue · Adish Singla -
2019 Poster: Adaptive Sequence Submodularity »
Marko Mitrovic · Ehsan Kazemi · Moran Feldman · Andreas Krause · Amin Karbasi -
2019 Poster: On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks »
Sunil Thulasidasan · Gopinath Chennupati · Jeffrey A Bilmes · Tanmoy Bhattacharya · Sarah Michalak -
2019 Poster: Safe Exploration for Interactive Machine Learning »
Matteo Turchetta · Felix Berkenkamp · Andreas Krause -
2018 Poster: Diverse Ensemble Evolution: Curriculum Data-Model Marriage »
Tianyi Zhou · Shengjie Wang · Jeffrey A Bilmes -
2018 Poster: Provable Variational Inference for Constrained Log-Submodular Models »
Josip Djolonga · Stefanie Jegelka · Andreas Krause -
2018 Poster: Submodular Maximization via Gradient Ascent: The Case of Deep Submodular Functions »
Wenruo Bai · William Stafford Noble · Jeffrey A Bilmes -
2018 Poster: Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier Features »
Mojmir Mutny · Andreas Krause -
2018 Spotlight: Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier Features »
Mojmir Mutny · Andreas Krause -
2018 Poster: Fairness Behind a Veil of Ignorance: A Welfare Analysis for Automated Decision Making »
Hoda Heidari · Claudio Ferrari · Krishna Gummadi · Andreas Krause -
2017 : Invited talk: Towards Safe Bayesian Optimization »
Andreas Krause -
2017 Workshop: Discrete Structures in Machine Learning »
Yaron Singer · Jeff A Bilmes · Andreas Krause · Stefanie Jegelka · Amin Karbasi -
2017 Poster: Interactive Submodular Bandit »
Lin Chen · Andreas Krause · Amin Karbasi -
2017 Poster: Safe Model-based Reinforcement Learning with Stability Guarantees »
Felix Berkenkamp · Matteo Turchetta · Angela Schoellig · Andreas Krause -
2017 Poster: Differentiable Learning of Submodular Functions »
Josip Djolonga · Andreas Krause -
2017 Spotlight: Differentiable Learning of Submodular Functions »
Josip Djolonga · Andreas Krause -
2017 Poster: Non-monotone Continuous DR-submodular Maximization: Structure and Algorithms »
Yatao Bian · Kfir Levy · Andreas Krause · Joachim M Buhmann -
2017 Poster: Stochastic Submodular Maximization: The Case of Coverage Functions »
Mohammad Karimi · Mario Lucic · Hamed Hassani · Andreas Krause -
2016 Workshop: Nonconvex Optimization for Machine Learning: Theory and Practice »
Hossein Mobahi · Anima Anandkumar · Percy Liang · Stefanie Jegelka · Anna Choromanska -
2016 Poster: Variational Inference in Mixed Probabilistic Submodular Models »
Josip Djolonga · Sebastian Tschiatschek · Andreas Krause -
2016 Poster: Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation »
Ilija Bogunovic · Jonathan Scarlett · Andreas Krause · Volkan Cevher -
2016 Poster: Cooperative Graphical Models »
Josip Djolonga · Stefanie Jegelka · Sebastian Tschiatschek · Andreas Krause -
2016 Poster: Fast and Provably Good Seedings for k-Means »
Olivier Bachem · Mario Lucic · Hamed Hassani · Andreas Krause -
2016 Oral: Fast and Provably Good Seedings for k-Means »
Olivier Bachem · Mario Lucic · Hamed Hassani · Andreas Krause -
2016 Poster: Safe Exploration in Finite Markov Decision Processes with Gaussian Processes »
Matteo Turchetta · Felix Berkenkamp · Andreas Krause -
2016 Poster: Dual Decomposed Learning with Factorwise Oracle for Structural SVM of Large Output Domain »
Ian En-Hsu Yen · Xiangru Huang · Kai Zhong · Ruohan Zhang · Pradeep Ravikumar · Inderjit Dhillon -
2016 Poster: Deep Submodular Functions: Definitions and Learning »
Brian W Dolhansky · Jeffrey A Bilmes -
2015 : Safe Exploration for Bayesian Optimization »
Andreas Krause -
2015 Poster: Fast Classification Rates for High-dimensional Gaussian Generative Models »
Tianyang Li · Adarsh Prasad · Pradeep Ravikumar -
2015 Poster: Collaborative Filtering with Graph Information: Consistency and Scalable Methods »
Nikhil Rao · Hsiang-Fu Yu · Pradeep Ravikumar · Inderjit Dhillon -
2015 Spotlight: Collaborative Filtering with Graph Information: Consistency and Scalable Methods »
Nikhil Rao · Hsiang-Fu Yu · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Beyond Sub-Gaussian Measurements: High-Dimensional Structured Estimation with Sub-Exponential Designs »
Vidyashankar Sivakumar · Arindam Banerjee · Pradeep Ravikumar -
2015 Poster: Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent »
Ian En-Hsu Yen · Kai Zhong · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Fixed-Length Poisson MRF: Adding Dependencies to the Multinomial »
David I Inouye · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Consistent Multilabel Classification »
Oluwasanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Distributed Submodular Cover: Succinctly Summarizing Massive Data »
Baharan Mirzasoleiman · Amin Karbasi · Ashwinkumar Badanidiyuru · Andreas Krause -
2015 Poster: Sampling from Probabilistic Submodular Models »
Alkis Gotovos · Hamed Hassani · Andreas Krause -
2015 Poster: Submodular Hamming Metrics »
Jennifer Gillenwater · Rishabh K Iyer · Bethany Lusch · Rahul Kidambi · Jeffrey A Bilmes -
2015 Poster: Closed-form Estimators for High-dimensional Generalized Linear Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2015 Spotlight: Closed-form Estimators for High-dimensional Generalized Linear Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2015 Spotlight: Distributed Submodular Cover: Succinctly Summarizing Massive Data »
Baharan Mirzasoleiman · Amin Karbasi · Ashwinkumar Badanidiyuru · Andreas Krause -
2015 Oral: Sampling from Probabilistic Submodular Models »
Alkis Gotovos · Hamed Hassani · Andreas Krause -
2015 Spotlight: Submodular Hamming Metrics »
Jennifer Gillenwater · Rishabh K Iyer · Bethany Lusch · Rahul Kidambi · Jeffrey A Bilmes -
2015 Poster: Mixed Robust/Average Submodular Partitioning: Fast Algorithms, Guarantees, and Applications »
Kai Wei · Rishabh K Iyer · Shengjie Wang · Wenruo Bai · Jeffrey A Bilmes -
2014 Workshop: NIPS’14 Workshop on Crowdsourcing and Machine Learning »
David Parkes · Denny Zhou · Chien-Ju Ho · Nihar Bhadresh Shah · Adish Singla · Jared Heyman · Edwin Simpson · Andreas Krause · Rafael Frongillo · Jennifer Wortman Vaughan · Panagiotis Papadimitriou · Damien Peters -
2014 Workshop: Discrete Optimization in Machine Learning »
Jeffrey A Bilmes · Andreas Krause · Stefanie Jegelka · S Thomas McCormick · Sebastian Nowozin · Yaron Singer · Dhruv Batra · Volkan Cevher -
2014 Poster: Divide-and-Conquer Learning by Anchoring a Conical Hull »
Tianyi Zhou · Jeffrey A Bilmes · Carlos Guestrin -
2014 Poster: QUIC & DIRTY: A Quadratic Approximation Approach for Dirty Statistical Models »
Cho-Jui Hsieh · Inderjit Dhillon · Pradeep Ravikumar · Stephen Becker · Peder A Olsen -
2014 Poster: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Efficient Sampling for Learning Sparse Additive Models in High Dimensions »
Hemant Tyagi · Bernd Gärtner · Andreas Krause -
2014 Poster: From MAP to Marginals: Variational Inference in Bayesian Submodular Models »
Josip Djolonga · Andreas Krause -
2014 Poster: On the Information Theoretic Limits of Learning Ising Models »
Rashish Tandon · Karthikeyan Shanmugam · Pradeep Ravikumar · Alex Dimakis -
2014 Poster: Parallel Double Greedy Submodular Maximization »
Xinghao Pan · Stefanie Jegelka · Joseph Gonzalez · Joseph K Bradley · Michael Jordan -
2014 Poster: Sparse Random Feature Algorithm as Coordinate Descent in Hilbert Space »
Ian En-Hsu Yen · Ting-Wei Lin · Shou-De Lin · Pradeep Ravikumar · Inderjit Dhillon -
2014 Spotlight: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Submodular meets Structured: Finding Diverse Subsets in Exponentially-Large Structured Item Sets »
Adarsh Prasad · Stefanie Jegelka · Dhruv Batra -
2014 Poster: Efficient Partial Monitoring with Prior Information »
Hastagiri P Vanchinathan · Gábor Bartók · Andreas Krause -
2014 Poster: Learning Mixtures of Submodular Functions for Image Collection Summarization »
Sebastian Tschiatschek · Rishabh K Iyer · Haochen Wei · Jeffrey A Bilmes -
2014 Poster: Proximal Quasi-Newton for Computationally Intensive L1-regularized M-estimators »
Kai Zhong · Ian En-Hsu Yen · Inderjit Dhillon · Pradeep Ravikumar -
2014 Spotlight: Submodular meets Structured: Finding Diverse Subsets in Exponentially-Large Structured Item Sets »
Adarsh Prasad · Stefanie Jegelka · Dhruv Batra -
2014 Session: Oral Session 1 »
Jeffrey A Bilmes -
2014 Poster: A Representation Theory for Ranking Functions »
Harsh H Pareek · Pradeep Ravikumar -
2014 Poster: Capturing Semantically Meaningful Word Dependencies with an Admixture of Poisson MRFs »
David I Inouye · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Constant Nullspace Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional Settings »
Ian En-Hsu Yen · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Elementary Estimators for Graphical Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2014 Poster: On the Convergence Rate of Decomposable Submodular Function Minimization »
Robert Nishihara · Stefanie Jegelka · Michael Jordan -
2014 Poster: Weakly-supervised Discovery of Visual Pattern Configurations »
Hyun Oh Song · Yong Jae Lee · Stefanie Jegelka · Trevor Darrell -
2014 Session: Tutorial Session B »
Jeffrey A Bilmes -
2014 Session: Tutorial Session B »
Jeffrey A Bilmes -
2014 Session: Tutorial Session B »
Jeffrey A Bilmes -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2013 Workshop: Bayesian Optimization in Theory and Practice »
Matthew Hoffman · Jasper Snoek · Nando de Freitas · Michael A Osborne · Ryan Adams · Sebastien Bubeck · Philipp Hennig · Remi Munos · Andreas Krause -
2013 Workshop: Discrete Optimization in Machine Learning: Connecting Theory and Practice »
Stefanie Jegelka · Andreas Krause · Pradeep Ravikumar · Kazuo Murota · Jeffrey A Bilmes · Yisong Yue · Michael Jordan -
2013 Poster: Conditional Random Fields via Univariate Exponential Families »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · Zhandong Liu -
2013 Poster: High-Dimensional Gaussian Process Bandits »
Josip Djolonga · Andreas Krause · Volkan Cevher -
2013 Poster: On Poisson Graphical Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · Zhandong Liu -
2013 Poster: BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar · Russell Poldrack -
2013 Oral: BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar · Russell Poldrack -
2013 Poster: Dirty Statistical Models »
Eunho Yang · Pradeep Ravikumar -
2013 Poster: Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints »
Rishabh K Iyer · Jeffrey A Bilmes -
2013 Oral: Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints »
Rishabh K Iyer · Jeffrey A Bilmes -
2013 Poster: Large Scale Distributed Sparse Precision Estimation »
Huahua Wang · Arindam Banerjee · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2013 Poster: Learning with Noisy Labels »
Nagarajan Natarajan · Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2013 Poster: Optimistic Concurrency Control for Distributed Unsupervised Learning »
Xinghao Pan · Joseph Gonzalez · Stefanie Jegelka · Tamara Broderick · Michael Jordan -
2013 Poster: Distributed Submodular Maximization: Identifying Representative Elements in Massive Data »
Baharan Mirzasoleiman · Amin Karbasi · Rik Sarkar · Andreas Krause -
2013 Poster: Reflection methods for user-friendly submodular optimization »
Stefanie Jegelka · Francis Bach · Suvrit Sra -
2013 Poster: Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions »
Rishabh K Iyer · Stefanie Jegelka · Jeffrey A Bilmes -
2013 Tutorial: Deep Mathematical Properties of Submodularity with Applications to Machine Learning »
Jeffrey A Bilmes -
2012 Poster: Graphical Models via Generalized Linear Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · zhandong Liu -
2012 Oral: Graphical Models via Generalized Linear Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · zhandong Liu -
2012 Poster: A Divide-and-Conquer Method for Sparse Inverse Covariance Estimation »
Cho-Jui Hsieh · Inderjit Dhillon · Pradeep Ravikumar · Arindam Banerjee -
2012 Poster: Submodular Bregman Divergences with Applications »
Rishabh K Iyer · Jeffrey A Bilmes -
2011 Workshop: Discrete Optimization in Machine Learning (DISCML): Uncertainty, Generalization and Feedback »
Andreas Krause · Pradeep Ravikumar · Stefanie S Jegelka · Jeffrey A Bilmes -
2011 Oral: Scalable Training of Mixture Models via Coresets »
Dan Feldman · Matthew Faulkner · Andreas Krause -
2011 Poster: Fast approximate submodular minimization »
Stefanie Jegelka · Hui Lin · Jeffrey A Bilmes -
2011 Poster: On Learning Discrete Graphical Models using Greedy Methods »
Ali Jalali · Christopher C Johnson · Pradeep Ravikumar -
2011 Poster: Scalable Training of Mixture Models via Coresets »
Dan Feldman · Matthew Faulkner · Andreas Krause -
2011 Spotlight: On Learning Discrete Graphical Models using Greedy Methods »
Ali Jalali · Christopher C Johnson · Pradeep Ravikumar -
2011 Poster: Contextual Gaussian Process Bandit Optimization »
Andreas Krause · Cheng Soon Ong -
2011 Poster: Crowdclustering »
Ryan G Gomes · Peter Welinder · Andreas Krause · Pietro Perona -
2011 Poster: Greedy Algorithms for Structurally Constrained High Dimensional Problems »
Ambuj Tewari · Pradeep Ravikumar · Inderjit Dhillon -
2011 Poster: Online Submodular Set Cover, Ranking, and Repeated Active Learning »
Andrew Guillory · Jeffrey A Bilmes -
2011 Poster: Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar -
2011 Session: Oral Session 5 »
Pradeep Ravikumar -
2011 Spotlight: Online Submodular Set Cover, Ranking, and Repeated Active Learning »
Andrew Guillory · Jeffrey A Bilmes -
2011 Poster: Nearest Neighbor based Greedy Coordinate Descent »
Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2010 Workshop: Discrete Optimization in Machine Learning: Structures, Algorithms and Applications »
Andreas Krause · Pradeep Ravikumar · Jeffrey A Bilmes · Stefanie Jegelka -
2010 Workshop: Robust Statistical Learning »
Pradeep Ravikumar · Constantine Caramanis · Sujay Sanghavi -
2010 Session: Oral Session 14 »
Pradeep Ravikumar -
2010 Oral: A Dirty Model for Multi-task Learning »
Ali Jalali · Pradeep Ravikumar · Sujay Sanghavi · Chao Ruan -
2010 Spotlight: Efficient Minimization of Decomposable Submodular Functions »
Peter G Stobbe · Andreas Krause -
2010 Poster: Discriminative Clustering by Regularized Information Maximization »
Ryan G Gomes · Andreas Krause · Pietro Perona -
2010 Poster: Efficient Minimization of Decomposable Submodular Functions »
Peter G Stobbe · Andreas Krause -
2010 Poster: Near-Optimal Bayesian Active Learning with Noisy Observations »
Daniel Golovin · Andreas Krause · Debajyoti Ray -
2010 Poster: A Dirty Model for Multi-task Learning »
Ali Jalali · Pradeep Ravikumar · Sujay Sanghavi · Chao Ruan -
2009 Workshop: Discrete Optimization in Machine Learning: Submodularity, Polyhedra and Sparsity »
Andreas Krause · Pradeep Ravikumar · Jeffrey A Bilmes -
2009 Poster: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2009 Spotlight: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2009 Poster: Online Learning of Assignments »
Matthew Streeter · Daniel Golovin · Andreas Krause -
2009 Poster: Submodularity Cuts and Applications »
Yoshinobu Kawahara · Kiyohito Nagano · Koji Tsuda · Jeffrey A Bilmes -
2009 Poster: Label Selection on Graphs »
Andrew Guillory · Jeffrey A Bilmes -
2009 Poster: A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers »
Sahand N Negahban · Pradeep Ravikumar · Martin J Wainwright · Bin Yu -
2009 Spotlight: Submodularity Cuts and Applications »
Yoshinobu Kawahara · Kiyohito Nagano · Koji Tsuda · Jeffrey A Bilmes -
2009 Spotlight: Online Learning of Assignments »
Matthew Streeter · Daniel Golovin · Andreas Krause -
2009 Oral: A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers »
Sahand N Negahban · Pradeep Ravikumar · Martin J Wainwright · Bin Yu -
2009 Poster: Entropic Graph Regularization in Non-Parametric Semi-Supervised Classification »
Amarnag Subramanya · Jeffrey A Bilmes -
2009 Spotlight: Entropic Graph Regularization in Non-Parametric Semi-Supervised Classification »
Amarnag Subramanya · Jeffrey A Bilmes -
2008 Poster: Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images »
Pradeep Ravikumar · Vincent Vu · Bin Yu · Thomas Naselaris · Kendrick Kay · Jack Gallant -
2008 Spotlight: Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images »
Pradeep Ravikumar · Vincent Vu · Bin Yu · Thomas Naselaris · Kendrick Kay · Jack Gallant -
2008 Poster: Model Selection in Gaussian Graphical Models: High-Dimensional Consistency of \ell_1-regularizedMLE »
Pradeep Ravikumar · Garvesh Raskutti · Martin J Wainwright · Bin Yu -
2007 Spotlight: Selecting Observations against Adversarial Objectives »
Andreas Krause · H. Brendan McMahan · Carlos Guestrin · Anupam Gupta -
2007 Poster: SpAM: Sparse Additive Models »
Pradeep Ravikumar · Han Liu · John Lafferty · Larry Wasserman -
2007 Poster: Selecting Observations against Adversarial Objectives »
Andreas Krause · H. Brendan McMahan · Carlos Guestrin · Anupam Gupta -
2007 Spotlight: SpAM: Sparse Additive Models »
Pradeep Ravikumar · Han Liu · John Lafferty · Larry Wasserman -
2006 Demonstration: The Vocal Joystick »
James Landay · Richard Wright · Kelley Kilanski · Xiao Li · Jon Malkin · Jeffrey A Bilmes -
2006 Poster: Inferring Graphical Model Structure using $\ell_1$-Regularized Pseudo-Likelihood »
Martin J Wainwright · Pradeep Ravikumar · John Lafferty -
2006 Spotlight: Inferring Graphical Model Structure using $\ell_1$-Regularized Pseudo-Likelihood »
Martin J Wainwright · Pradeep Ravikumar · John Lafferty -
2006 Poster: Multi-dynamic Bayesian Networks »
Karim Filali · Jeffrey A Bilmes