Timezone: »
The emergence of “big data” has brought about a paradigm shift throughout computer science. Computer vision is no exception. The explosion of images and videos on the Internet and the availability of large amounts of annotated data have created unprecedented opportunities and fundamental challenges on scaling up computer vision.
Over the past few years, machine learning on big data has become a thriving field with a plethora of theories and tools developed. Meanwhile, large scale vision has also attracted increasing attention in the computer vision community. This workshop aims to bring closer researchers in large scale machine learning and large scale vision to foster cross-talk between the two fields. The goal is to encourage machine learning researchers to work on large scale vision problems, to inform computer vision researchers about new developments on large scale learning, and to identify unique challenges and opportunities.
This workshop will focus on two distinct yet closely related vision problems: recognition and retrieval. Both are inherently large scale. In particular, both must handle high dimensional features (hundreds of thousands to millions), a large variety of visual classes (tens of thousands to millions), and a large number of examples (millions to billions).
This workshop will consist of invited talks, panels, discussions, and paper submissions including, but not limited to, the following topics:
-- State of the field: What really defines large scale vision? How does it differ from traditional vision research? What are its unique challenges for large scale learning?
-- Indexing algorithms and data structures: How do we efficiently find similar features/images/classes from a large collection, a key operation in both recognition and retrieval?
-- Semi-supervised/unsupervised learning: Large scale data comes with different levels of supervision, ranging from fully labeled and quality controlled to completely unlabeled. How do we make use of such data?
-- Metric learning: Retrieval visually similar images/objects requires learning a similarity metric. How do we learn a good metric from a large amount of data?
-- Visual models and feature representations: What is a good feature representation? How do we model and represent images/videos to handle tens of thousands of fine-grained visual classes?
-- Exploiting semantic structures: How do we exploit the rich semantic relations between visual categories to handle a large number of classes?
-- Transfer learning: How do we handle new visual classes (objects/scenes/activities) after having learned a large number of them? How do we transfer knowledge using the semantic relations between classes?
-- Optimization techniques: How do we perform learning with training data that do not fit into memory? How do we parallelize learning?
-- Datasets issues: What is a good large scale dataset? How should we construct datasets? How do we avoid dataset bias?
-- Systems and infrastructure: How do we design and develop libraries and tools to facilitate large scale vision research? What infrastructure do we need?
The target audience of this workshop includes industry and academic researchers interested in machine learning, computer vision, multimedia, and related fields.
Author Information
Jia Deng (Google)
Samy Bengio (Google Brain)
Yuanqing Lin (NEC Labs America)
Li Fei-Fei (Stanford University & Google)
More from the Same Authors
-
2021 : Neural Abstructions: Abstractions that Support Construction for Grounded Language Learning »
Kaylee Burns · Christopher D Manning · Li Fei-Fei -
2021 : What Matters in Learning from Offline Human Demonstrations for Robot Manipulation »
Ajay Mandlekar · Danfei Xu · Josiah Wong · Chen Wang · Li Fei-Fei · Silvio Savarese · Yuke Zhu · Roberto Martín-Martín -
2022 : Continuous Soft Pseudo-Labeling in ASR »
Tatiana Likhomanenko · Ronan Collobert · Navdeep Jaitly · Samy Bengio -
2023 Poster: Transformers learn through gradual rank increase »
Emmanuel Abbe · Samy Bengio · Enric Boix-Adsera · Etai Littwin · Joshua Susskind -
2022 Poster: Learning to Reason with Neural Networks: Generalization, Unseen Data and Boolean Measures »
Emmanuel Abbe · Samy Bengio · Elisabetta Cornacchia · Jon Kleinberg · Aryo Lotfi · Maithra Raghu · Chiyuan Zhang -
2021 Poster: Learnable Fourier Features for Multi-dimensional Spatial Positional Encoding »
Yang Li · Si Si · Gang Li · Cho-Jui Hsieh · Samy Bengio -
2021 Poster: Improving Anytime Prediction with Parallel Cascaded Networks and a Temporal-Difference Loss »
Michael Iuzzolino · Michael Mozer · Samy Bengio -
2020 : Closing remarks from Fei-Fei Li, Sequoia Professor of Computer Science, Stanford University & Co-Director of Stanford’s Human-Centered AI Institute »
Li Fei-Fei -
2020 : Q/A for invited talk #5 »
Li Fei-Fei -
2020 : Creating diverse tasks to catalyze robot learning »
Li Fei-Fei -
2020 Poster: Memory Based Trajectory-conditioned Policies for Learning from Sparse Rewards »
Yijie Guo · Jongwook Choi · Marcin Moczulski · Shengyu Feng · Samy Bengio · Mohammad Norouzi · Honglak Lee -
2020 : Dr. Samy Bengio (Google Brain) »
Samy Bengio -
2019 : Contributed Session - Spotlight Talks »
Jonathan Frankle · David Schwab · Ari Morcos · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · YiDing Jiang · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Sho Yaida · Muqiao Yang -
2019 : Lunch Break and Posters »
Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Satrajit Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Freddie Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Daniel Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Samuel Schoenholz · David Schwab · Dongyu Li · Sang Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu -
2019 Poster: Transfusion: Understanding Transfer Learning for Medical Imaging »
Maithra Raghu · Chiyuan Zhang · Jon Kleinberg · Samy Bengio -
2019 Poster: Regression Planning Networks »
Danfei Xu · Roberto Martín-Martín · De-An Huang · Yuke Zhu · Silvio Savarese · Li Fei-Fei -
2019 Poster: HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models »
Sharon Zhou · Mitchell Gordon · Ranjay Krishna · Austin Narcomey · Li Fei-Fei · Michael Bernstein -
2019 Oral: HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models »
Sharon Zhou · Mitchell Gordon · Ranjay Krishna · Austin Narcomey · Li Fei-Fei · Michael Bernstein -
2018 : Panel Discussion »
Rich Caruana · Mike Schuster · Ralf Schlüter · Hynek Hermansky · Renato De Mori · Samy Bengio · Michiel Bacchiani · Jason Eisner -
2018 Poster: Large Margin Deep Networks for Classification »
Gamaleldin Elsayed · Dilip Krishnan · Hossein Mobahi · Kevin Regan · Samy Bengio -
2018 Poster: Learning to Play With Intrinsically-Motivated, Self-Aware Agents »
Nick Haber · Damian Mrowca · Stephanie Wang · Li Fei-Fei · Daniel Yamins -
2018 Poster: Learning to Decompose and Disentangle Representations for Video Prediction »
Jun-Ting Hsieh · Bingbin Liu · De-An Huang · Li Fei-Fei · Juan Carlos Niebles -
2018 Poster: Insights on representational similarity in neural networks with canonical correlation »
Ari Morcos · Maithra Raghu · Samy Bengio -
2018 Poster: Content preserving text generation with attribute controls »
Lajanugen Logeswaran · Honglak Lee · Samy Bengio -
2018 Poster: Flexible neural representation for physics prediction »
Damian Mrowca · Chengxu Zhuang · Elias Wang · Nick Haber · Li Fei-Fei · Josh Tenenbaum · Daniel Yamins -
2017 : Keynote II: Fei-Fei Li, Stanford »
Li Fei-Fei -
2017 : Competition I: Adversarial Attacks and Defenses »
Alexey Kurakin · Ian Goodfellow · Samy Bengio · Yao Zhao · Yinpeng Dong · Tianyu Pang · Fangzhou Liao · Cihang Xie · Adithya Ganesh · Oguz Elibol -
2017 Poster: Label Efficient Learning of Transferable Representations acrosss Domains and Tasks »
Zelun Luo · Yuliang Zou · Judy Hoffman · Li Fei-Fei -
2016 : Knowledge Acquisition for Visual Question Answering via Iterative Querying »
Yuke Zhu · Joseph Lim · Li Fei-Fei -
2016 Workshop: Extreme Classification: Multi-class and Multi-label Learning in Extremely Large Label Spaces »
Moustapha Cisse · Manik Varma · Samy Bengio -
2016 Poster: Can Active Memory Replace Attention? »
Łukasz Kaiser · Samy Bengio -
2016 Poster: An Online Sequence-to-Sequence Model Using Partial Conditioning »
Navdeep Jaitly · Quoc V Le · Oriol Vinyals · Ilya Sutskever · David Sussillo · Samy Bengio -
2016 Poster: Reward Augmented Maximum Likelihood for Neural Structured Prediction »
Mohammad Norouzi · Samy Bengio · zhifeng Chen · Navdeep Jaitly · Mike Schuster · Yonghui Wu · Dale Schuurmans -
2015 Poster: Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks »
Samy Bengio · Oriol Vinyals · Navdeep Jaitly · Noam Shazeer -
2014 Poster: Deep Fragment Embeddings for Bidirectional Image Sentence Mapping »
Andrej Karpathy · Armand Joulin · Li Fei-Fei -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2013 Poster: DeViSE: A Deep Visual-Semantic Embedding Model »
Andrea Frome · Greg Corrado · Jonathon Shlens · Samy Bengio · Jeff Dean · Marc'Aurelio Ranzato · Tomas Mikolov -
2012 Poster: Shifting Weights: Adapting Object Detectors from Image to Video »
Kevin Tang · Vignesh Ramanathan · Li Fei-Fei · Daphne Koller -
2012 Demonstration: EVA: Engine for Visual Annotation »
Jia Deng · Joanathan Krause · Zhiheng Huang · Alexander C Berg · Li Fei-Fei -
2011 Poster: Fast and Balanced: Efficient Label Tree Learning for Large Scale Object Recognition »
Jia Deng · Sanjeev Satheesh · Alexander C Berg · Li Fei-Fei -
2011 Poster: Large-Scale Category Structure Aware Image Categorization »
Bin Zhao · Li Fei-Fei · Eric Xing -
2010 Session: Oral Session 10 »
Li Fei-Fei -
2010 Poster: Label Embedding Trees for Large Multi-Class Tasks »
Samy Bengio · Jason E Weston · David Grangier -
2010 Poster: Large Margin Learning of Upstream Scene Understanding Models »
Jun Zhu · Li-Jia Li · Li Fei-Fei · Eric Xing -
2010 Poster: Deep Coding Network »
Yuanqing Lin · Tong Zhang · Shenghuo Zhu · Kai Yu -
2010 Poster: Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification »
Li-Jia Li · Hao Su · Eric Xing · Li Fei-Fei -
2009 Poster: Group Sparse Coding »
Samy Bengio · Fernando Pereira · Yoram Singer · Dennis Strelow -
2009 Poster: An Online Algorithm for Large Scale Image Similarity Learning »
Gal Chechik · Uri Shalit · Varun Sharma · Samy Bengio -
2007 Workshop: Efficient Machine Learning - Overcoming Computational Bottlenecks in Machine Learning (Part 2) »
Samy Bengio · Corinna Cortes · Dennis DeCoste · Francois Fleuret · Ramesh Natarajan · Edwin Pednault · Dan Pelleg · Elad Yom-Tov -
2007 Workshop: Efficient Machine Learning - Overcoming Computational Bottlenecks in Machine Learning (Part 1) »
Samy Bengio · Corinna Cortes · Dennis DeCoste · Francois Fleuret · Ramesh Natarajan · Edwin Pednault · Dan Pelleg · Elad Yom-Tov -
2007 Oral: Blind channel identification for speech dereverberation using l1-norm sparse learning »
Yuanqing Lin · Jingdong Chen · Youngmoo E Kim · Daniel Lee -
2007 Poster: Blind channel identification for speech dereverberation using l1-norm sparse learning »
Yuanqing Lin · Jingdong Chen · Youngmoo E Kim · Daniel Lee -
2006 Workshop: Learning to Compare Examples »
David Grangier · Samy Bengio