Timezone: »
It has been argued that perceptual multistability reflects probabilistic inference performed by the brain when sensory input is ambiguous. Alternatively, more traditional explanations of multistability refer to low-level mechanisms such as neuronal adaptation. We employ a Deep Boltzmann Machine (DBM) model of cortical processing to demonstrate that these two different approaches can be combined in the same framework. Based on recent developments in machine learning, we show how neuronal adaptation can be understood as a mechanism that improves probabilistic, sampling-based inference. Using the ambiguous Necker cube image, we analyze the perceptual switching exhibited by the model. We also examine the influence of spatial attention, and explore how binocular rivalry can be modeled with the same approach. Our work joins earlier studies in demonstrating how the principles underlying DBMs relate to cortical processing, and offers novel perspectives on the neural implementation of approximate probabilistic inference in the brain.
Author Information
David Reichert (DeepMind)
Peggy Series (University of Edinburgh)
Amos Storkey (University of Edinburgh)
Related Events (a corresponding poster, oral, or spotlight)
-
2011 Poster: Neuronal Adaptation for Sampling-Based Probabilistic Inference in Perceptual Bistability »
Tue. Dec 13th 04:45 -- 10:59 PM Room
More from the Same Authors
-
2021 : Alchemy: A benchmark and analysis toolkit for meta-reinforcement learning agents »
Jane Wang · Michael King · Nicolas Porcel · Zeb Kurth-Nelson · Tina Zhu · Charles Deck · Peter Choy · Mary Cassin · Malcolm Reynolds · Francis Song · Gavin Buttimore · David Reichert · Neil Rabinowitz · Loic Matthey · Demis Hassabis · Alexander Lerchner · Matt Botvinick -
2021 : Hamiltonian prior to Disentangle Content and Motion in Image Sequences »
Asif Khan · Amos Storkey -
2022 : Parity in predictive performance is neither necessary nor sufficient for fairness »
Justin Engelmann · Miguel Bernabeu · Amos Storkey -
2022 : Deep Class-Conditional Gaussians for Continual Learning »
Thomas Lee · Amos Storkey -
2022 Poster: Hamiltonian Latent Operators for content and motion disentanglement in image sequences »
Asif Khan · Amos Storkey -
2021 Poster: Gradient-based Hyperparameter Optimization Over Long Horizons »
Paul Micaelli · Amos Storkey -
2020 Poster: Self-Supervised Relational Reasoning for Representation Learning »
Massimiliano Patacchiola · Amos Storkey -
2020 Spotlight: Self-Supervised Relational Reasoning for Representation Learning »
Massimiliano Patacchiola · Amos Storkey -
2020 Poster: Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels »
Massimiliano Patacchiola · Jack Turner · Elliot Crowley · Michael O'Boyle · Amos Storkey -
2020 Spotlight: Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels »
Massimiliano Patacchiola · Jack Turner · Elliot Crowley · Michael O'Boyle · Amos Storkey -
2019 Poster: Zero-shot Knowledge Transfer via Adversarial Belief Matching »
Paul Micaelli · Amos Storkey -
2019 Spotlight: Zero-shot Knowledge Transfer via Adversarial Belief Matching »
Paul Micaelli · Amos Storkey -
2019 Poster: Learning to Learn By Self-Critique »
Antreas Antoniou · Amos Storkey -
2018 Poster: Moonshine: Distilling with Cheap Convolutions »
Elliot Crowley · Gavia Gray · Amos Storkey -
2017 Poster: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Oral: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2015 Poster: Covariance-Controlled Adaptive Langevin Thermostat for Large-Scale Bayesian Sampling »
Xiaocheng Shang · Zhanxing Zhu · Benedict Leimkuhler · Amos Storkey -
2014 Workshop: NIPS Workshop on Transactional Machine Learning and E-Commerce »
David Parkes · David H Wolpert · Jennifer Wortman Vaughan · Jacob D Abernethy · Amos Storkey · Mark Reid · Ping Jin · Nihar Bhadresh Shah · Mehryar Mohri · Luis E Ortiz · Robin Hanson · Aaron Roth · Satyen Kale · Sebastien Lahaie -
2012 Poster: Continuous Relaxations for Discrete Hamiltonian Monte Carlo »
Zoubin Ghahramani · Yichuan Zhang · Charles Sutton · Amos Storkey -
2012 Spotlight: Continuous Relaxations for Discrete Hamiltonian Monte Carlo »
Zoubin Ghahramani · Yichuan Zhang · Charles Sutton · Amos Storkey -
2012 Poster: The Coloured Noise Expansion and Parameter Estimation of Diffusion Processes »
Simon Lyons · Amos Storkey · Simo Sarkka -
2010 Poster: Hallucinations in Charles Bonnet Syndrome Induced by Homeostasis: a Deep Boltzmann Machine Model »
David Reichert · Peggy Series · Amos Storkey -
2010 Poster: Sparse Instrumental Variables (SPIV) for Genome-Wide Studies »
Felix V Agakov · Paul McKeigue · Jon Krohn · Amos Storkey -
2007 Poster: Continuous Time Particle Filtering for fMRI »
Lawrence Murray · Amos Storkey -
2007 Poster: Modelling motion primitives and their timing in biologically executed movements »
Ben H Williams · Marc Toussaint · Amos Storkey -
2006 Poster: Learning Structural Equation Models for fMRI »
Amos Storkey · Enrico Simonotto · Heather Whalley · Stephen Lawrie · Lawrence Murray · David McGonigle -
2006 Poster: Mixture Regression for Covariate Shift »
Amos Storkey · Masashi Sugiyama