Timezone: »

 
Spotlight
Learning to Learn with Compound HD Models
Russ Salakhutdinov · Josh Tenenbaum · Antonio Torralba

Wed Dec 14 01:48 AM -- 01:52 AM (PST) @

We introduce HD (or ``Hierarchical-Deep'') models, a new compositional learning architecture that integrates deep learning models with structured hierarchical Bayesian models. Specifically we show how we can learn a hierarchical Dirichlet process (HDP) prior over the activities of the top-level features in a Deep Boltzmann Machine (DBM). This compound HDP-DBM model learns to learn novel concepts from very few training examples, by learning low-level generic features, high-level features that capture correlations among low-level features, and a category hierarchy for sharing priors over the high-level features that are typical of different kinds of concepts. We present efficient learning and inference algorithms for the HDP-DBM model and show that it is able to learn new concepts from very few examples on CIFAR-100 object recognition, handwritten character recognition, and human motion capture datasets.

Author Information

Russ Salakhutdinov (Carnegie Mellon University)
Josh Tenenbaum (MIT)

Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).

Antonio Torralba (Massachusetts Institute of Technology)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors