Timezone: »
The efficient coding hypothesis holds that neural receptive fields are adapted to the statistics of the environment, but is agnostic to the timescale of this adaptation, which occurs on both evolutionary and developmental timescales. In this work we focus on that component of adaptation which occurs during an organism's lifetime, and show that a number of unsupervised feature learning algorithms can account for features of normal receptive field properties across multiple primary sensory cortices. Furthermore, we show that the same algorithms account for altered receptive field properties in response to experimentally altered environmental statistics. Based on these modeling results we propose these models as phenomenological models of receptive field plasticity during an organism's lifetime. Finally, due to the success of the same models in multiple sensory areas, we suggest that these algorithms may provide a constructive realization of the theory, first proposed by Mountcastle (1978), that a qualitatively similar learning algorithm acts throughout primary sensory cortices.
Author Information
Andrew M Saxe (Stanford University)
Maneesh Bhand (Stanford University)
Ritvik Mudur (Stanford University)
Bipin Suresh (Stanford University)
Andrew Y Ng (DeepLearning.AI)
More from the Same Authors
-
2016 Poster: Tensor Switching Networks »
Chuan-Yung Tsai · Andrew M Saxe · David Cox -
2015 Symposium: Deep Learning Symposium »
Yoshua Bengio · Marc'Aurelio Ranzato · Honglak Lee · Max Welling · Andrew Y Ng -
2014 Workshop: Deep Learning and Representation Learning »
Andrew Y Ng · Yoshua Bengio · Adam Coates · Roland Memisevic · Sharanyan Chetlur · Geoffrey E Hinton · Shamim Nemati · Bryan Catanzaro · Surya Ganguli · Herbert Jaeger · Phil Blunsom · Leon Bottou · Volodymyr Mnih · Chen-Yu Lee · Rich M Schwartz -
2013 Demonstration: Easy Text Classification with Machine Learning »
Richard Socher · Romain Paulus · Bryan McCann · Andrew Y Ng -
2013 Poster: Reasoning With Neural Tensor Networks for Knowledge Base Completion »
Richard Socher · Danqi Chen · Christopher D Manning · Andrew Y Ng -
2013 Poster: Zero-Shot Learning Through Cross-Modal Transfer »
Richard Socher · Milind Ganjoo · Christopher D Manning · Andrew Y Ng -
2012 Poster: Recursive Deep Learning on 3D Point Clouds »
Richard Socher · Bharath Bath · Brody Huval · Christopher D Manning · Andrew Y Ng -
2012 Poster: Deep Learning of invariant features via tracked video sequences »
Will Y Zou · Andrew Y Ng · Shenghuo Zhu · Kai Yu -
2012 Poster: Large Scale Distributed Deep Networks »
Jeff Dean · Greg Corrado · Rajat Monga · Kai Chen · Matthieu Devin · Quoc V Le · Mark Mao · Marc'Aurelio Ranzato · Andrew Senior · Paul Tucker · Ke Yang · Andrew Y Ng -
2012 Poster: Emergence of Object-Selective Features in Unsupervised Feature Learning »
Adam Coates · Andrej Karpathy · Andrew Y Ng -
2011 Workshop: Challenges in Learning Hierarchical Models: Transfer Learning and Optimization »
Quoc V. Le · Marc'Aurelio Ranzato · Russ Salakhutdinov · Josh Tenenbaum · Andrew Y Ng -
2011 Workshop: Deep Learning and Unsupervised Feature Learning »
Yoshua Bengio · Adam Coates · Yann LeCun · Nicolas Le Roux · Andrew Y Ng -
2011 Poster: ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning »
Quoc V. Le · Alexandre Karpenko · Jiquan Ngiam · Andrew Y Ng -
2011 Poster: Unfolding Recursive Autoencoders for Paraphrase Detection »
Richard Socher · Eric H Huang · Jeffrey Pennin · Andrew Y Ng · Christopher D Manning -
2011 Poster: Sparse Filtering »
Jiquan Ngiam · Pang Wei Koh · Zhenghao Chen · Sonia A Bhaskar · Andrew Y Ng -
2011 Spotlight: Sparse Filtering »
Jiquan Ngiam · Pang Wei Koh · Zhenghao Chen · Sonia A Bhaskar · Andrew Y Ng -
2011 Demonstration: Haptic Belt with Pedestrian Detection »
Jean Feng · Marc Rasi · Andrew Y Ng · Quoc V. Le · Morgan Quigley · Justin K Chen · Tiffany Low · Will Y Zou -
2011 Poster: Selecting Receptive Fields in Deep Networks »
Adam Coates · Andrew Y Ng -
2010 Workshop: Deep Learning and Unsupervised Feature Learning »
Honglak Lee · Marc'Aurelio Ranzato · Yoshua Bengio · Geoffrey E Hinton · Yann LeCun · Andrew Y Ng -
2010 Poster: Tiled convolutional neural networks »
Quoc V. Le · Jiquan Ngiam · Zhenghao Chen · Daniel Jin hao Chia · Pang Wei Koh · Andrew Y Ng -
2010 Poster: Energy Disaggregation via Discriminative Sparse Coding »
J. Zico Kolter · Siddarth Batra · Andrew Y Ng -
2009 Mini Symposium: Machine Learning for Sustainability »
J. Zico Kolter · Thomas Dietterich · Andrew Y Ng -
2009 Poster: Measuring Invariances in Deep Networks »
Ian Goodfellow · Quoc V. Le · Andrew M Saxe · Andrew Y Ng -
2009 Poster: Unsupervised feature learning for audio classification using convolutional deep belief networks »
Honglak Lee · Peter Pham · Yan Largman · Andrew Y Ng -
2008 Demonstration: High-Accuracy 3D Sensing for Mobile Manipulators »
Stephen Gould · Morgan Quigley · Siddarth Batra · Ellen Klingbiel · Quoc V Le · Andrew Y Ng -
2007 Poster: Sparse deep belief net model for visual area V2 »
Honglak Lee · Ekanadham Chaitanya · Andrew Y Ng -
2007 Demonstration: Holistic Scene Understanding from Visual and Range Data »
Stephen Gould · Morgan Quigley · Andrew Y Ng · Daphne Koller -
2007 Spotlight: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion »
J. Zico Kolter · Pieter Abbeel · Andrew Y Ng -
2007 Poster: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion »
J. Zico Kolter · Pieter Abbeel · Andrew Y Ng -
2007 Demonstration: Building a 3-D Model From a Single Still Image »
Ashutosh Saxena · min sun · Andrew Y Ng -
2007 Poster: Efficient multiple hyperparameter learning for log-linear models »
Chuong B Do · Chuan-Sheng Foo · Andrew Y Ng -
2006 Demonstration: Peripheral-Foveal Vision for Real-time Object Recognition »
Benjamin Sapp · Stephen Gould · Adrian Kaehler · Gary R Bradski · Andrew Y Ng -
2006 Poster: Robotic Grasping of Novel Objects »
Ashutosh Saxena · Justin Driemeyer · Justin Kearns · Andrew Y Ng -
2006 Poster: Map-Reduce for Machine Learning on Multicore »
Cheng-Tao Chu · Sang Kyun Kim · Yi-An Lin · YuanYuan Yu · Gary R Bradski · Andrew Y Ng · Kunle Olukotun -
2006 Poster: An Application of Reinforcement Learning to Aerobatic Helicopter Flight »
Pieter Abbeel · Adam P Coates · Andrew Y Ng · Morgan Quigley -
2006 Talk: Map-Reduce for Machine Learning on Multicore »
Cheng-Tao Chu · Sang Kyun Kim · Yi-An Lin · YuanYuan Yu · Gary R Bradski · Andrew Y Ng · Kunle Olukotun -
2006 Spotlight: Robotic Grasping of Novel Objects »
Ashutosh Saxena · Justin Driemeyer · Justin Kearns · Andrew Y Ng -
2006 Talk: An Application of Reinforcement Learning to Aerobatic Helicopter Flight »
Pieter Abbeel · Adam P Coates · Andrew Y Ng · Morgan Quigley -
2006 Poster: Efficient sparse coding algorithms, end-stopping and nCRF surround suppression »
Honglak Lee · Alexis Battle · Raina Rajat · Andrew Y Ng