Timezone: »

Structured sparse coding via lateral inhibition
arthur d szlam · Karol Gregor · Yann LeCun

Wed Dec 14 08:45 AM -- 02:59 PM (PST) @ None #None

This work describes a conceptually simple method for structured sparse coding and dictionary design. Supposing a dictionary with K atoms, we introduce a structure as a set of penalties or interactions between every pair of atoms. We describe modifications of standard sparse coding algorithms for inference in this setting, and describe experiments showing that these algorithms are efficient. We show that interesting dictionaries can be learned for interactions that encode tree structures or locally connected structures. Finally, we show that our framework allows us to learn the values of the interactions from the data, rather than having them pre-specified.

Author Information

arthur d szlam (CCNY / IMA)
Karol Gregor (Google DeepMind)
Yann LeCun (Facebook AI Research and New York University)

Yann LeCun is Director of AI Research at Facebook, and Silver Professor of Data Science, Computer Science, Neural Science, and Electrical Engineering at New York University. He received the Electrical Engineer Diploma from ESIEE, Paris in 1983, and a PhD in Computer Science from Université Pierre et Marie Curie (Paris) in 1987. After a postdoc at the University of Toronto, he joined AT&T Bell Laboratories in Holmdel, NJ in 1988. He became head of the Image Processing Research Department at AT&T Labs-Research in 1996, and joined NYU as a professor in 2003, after a brief period as a Fellow of the NEC Research Institute in Princeton. From 2012 to 2014 he directed NYU's initiative in data science and became the founding director of the NYU Center for Data Science. He was named Director of AI Research at Facebook in late 2013 and retains a part-time position on the NYU faculty. His current interests include AI, machine learning, computer perception, mobile robotics, and computational neuroscience. He has published over 180 technical papers and book chapters on these topics as well as on neural networks, handwriting recognition, image processing and compression, and on dedicated circuits for computer perception.

More from the Same Authors