Timezone: »

Structured sparse coding via lateral inhibition
arthur d szlam · Karol Gregor · Yann LeCun

Wed Dec 14 08:45 AM -- 02:59 PM (PST) @

This work describes a conceptually simple method for structured sparse coding and dictionary design. Supposing a dictionary with K atoms, we introduce a structure as a set of penalties or interactions between every pair of atoms. We describe modifications of standard sparse coding algorithms for inference in this setting, and describe experiments showing that these algorithms are efficient. We show that interesting dictionaries can be learned for interactions that encode tree structures or locally connected structures. Finally, we show that our framework allows us to learn the values of the interactions from the data, rather than having them pre-specified.

Author Information

arthur d szlam (CCNY / IMA)
Karol Gregor (Google DeepMind)
Yann LeCun (Facebook)

Yann LeCun is VP & Chief AI Scientist at Meta and Silver Professor at NYU affiliated with the Courant Institute of Mathematical Sciences & the Center for Data Science. He was the founding Director of FAIR (Meta's AI Research group) and of the NYU Center for Data Science. He received an Engineering Diploma from ESIEE (Paris) and a PhD from Sorbonne Université. After a postdoc in Toronto he joined AT&T Bell Labs in 1988, and AT&T Labs in 1996 as Head of Image Processing Research. He joined NYU as a professor in 2003 and Facebook in 2013. His interests include AI machine learning, computer perception, robotics and computational neuroscience. He is the recipient of the 2018 ACM Turing Award (with Geoffrey Hinton and Yoshua Bengio) for "conceptual and engineering breakthroughs that have made deep neural networks a critical component of computing", a member of the National Academy of Sciences, the National Academy of Engineering and a Chevalier de la Légion d’Honneur.

More from the Same Authors