Timezone: »
We propose a new sparse Bayesian model for multi-task regression and classification. The model is able to capture correlations between tasks, or more specifically a low-rank approximation of the covariance matrix, while being sparse in the features. We introduce a general family of group sparsity inducing priors based on matrix-variate Gaussian scale mixtures. We show the amount of sparsity can be learnt from the data by combining an approximate inference approach with type II maximum likelihood estimation of the hyperparameters. Empirical evaluations on data sets from biology and vision demonstrate the applicability of the model, where on both regression and classification tasks it achieves competitive predictive performance compared to previously proposed methods.
Author Information
Cedric Archambeau (Helsing)
Shengbo Guo (Facebook)
Onno Zoeter (Xerox Research Centre Europe)
More from the Same Authors
-
2022 : Differentially Private Gradient Boosting on Linear Learners for Tabular Data »
Saeyoung Rho · Shuai Tang · Sergul Aydore · Michael Kearns · Aaron Roth · Yu-Xiang Wang · Steven Wu · Cedric Archambeau -
2022 Poster: Memory Efficient Continual Learning with Transformers »
Beyza Ermis · Giovanni Zappella · Martin Wistuba · Aditya Rawal · Cedric Archambeau -
2022 Poster: Private Synthetic Data for Multitask Learning and Marginal Queries »
Giuseppe Vietri · Cedric Archambeau · Sergul Aydore · William Brown · Michael Kearns · Aaron Roth · Ankit Siva · Shuai Tang · Steven Wu -
2020 Session: Orals & Spotlights Track 16: Continual/Meta/Misc Learning »
Laurent Charlin · Cedric Archambeau -
2017 : Industry talk: Cedric Archambeau (TBA) »
Cedric Archambeau -
2014 Workshop: Learning Semantics »
Cedric Archambeau · Antoine Bordes · Leon Bottou · Chris J Burges · David Grangier -
2011 Workshop: Choice Models and Preference Learning »
Jean-Marc Andreoli · Cedric Archambeau · Guillaume Bouchard · Shengbo Guo · Kristian Kersting · Scott Sanner · Martin Szummer · Paolo Viappiani · Onno Zoeter -
2011 Session: Spotlight Session 7 »
Cedric Archambeau -
2011 Session: Oral Session 9 »
Cedric Archambeau -
2008 Poster: Sparse probabilistic projections »
Cedric Archambeau · Francis Bach -
2008 Spotlight: Sparse probabilistic projections »
Cedric Archambeau · Francis Bach -
2007 Poster: Variational Inference for Diffusion Processes »
Cedric Archambeau · Manfred Opper · Yuan Shen · Dan Cornford · John Shawe-Taylor -
2006 Workshop: Dynamical Systems, Stochastic Processes and Bayesian Inference »
Manfred Opper · Cedric Archambeau · John Shawe-Taylor