Timezone: »
We study the family of p-resistances on graphs for p ≥ 1. This family generalizes the standard resistance distance. We prove that for any fixed graph, for p=1, the p-resistance coincides with the shortest path distance, for p=2 it coincides with the standard resistance distance, and for p → ∞ it converges to the inverse of the minimal s-t-cut in the graph. Secondly, we consider the special case of random geometric graphs (such as k-nearest neighbor graphs) when the number n of vertices in the graph tends to infinity. We prove that an interesting phase-transition takes place. There exist two critical thresholds p^* and p^* such that if p < p^, then the p-resistance depends on meaningful global properties of the graph, whereas if p > p^, it only depends on trivial local quantities and does not convey any useful information. We can explicitly compute the critical values: p^* = 1 + 1/(d-1) and p^ = 1 + 1/(d-2) where d is the dimension of the underlying space (we believe that the fact that there is a small gap between p^* and p^* is an artifact of our proofs. We also relate our findings to Laplacian regularization and suggest to use q-Laplacians as regularizers, where q satisfies 1/p^ + 1/q = 1.
Author Information
Morteza Alamgir (University of Hamburg)
Ulrike von Luxburg (University of Tuebingen)
Related Events (a corresponding poster, oral, or spotlight)
-
2011 Spotlight: Phase transition in the family of p-resistances »
Wed. Dec 14th 12:04 -- 12:08 PM Room
More from the Same Authors
-
2023 Poster: Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension »
Moritz Haas · David Holzmüller · Ulrike Luxburg · Ingo Steinwart -
2022 Poster: Interpolation and Regularization for Causal Learning »
Leena Chennuru Vankadara · Luca Rendsburg · Ulrike Luxburg · Debarghya Ghoshdastidar -
2019 Poster: Foundations of Comparison-Based Hierarchical Clustering »
Debarghya Ghoshdastidar · Michaël Perrot · Ulrike von Luxburg -
2018 Poster: When do random forests fail? »
Cheng Tang · Damien Garreau · Ulrike von Luxburg -
2018 Poster: Measures of distortion for machine learning »
Leena Chennuru Vankadara · Ulrike von Luxburg -
2018 Poster: Practical Methods for Graph Two-Sample Testing »
Debarghya Ghoshdastidar · Ulrike von Luxburg -
2017 : Ordinal distance comparisons: from topology to geometry »
Ulrike von Luxburg -
2017 Poster: Kernel functions based on triplet comparisons »
Matthäus Kleindessner · Ulrike von Luxburg -
2013 Poster: Density estimation from unweighted k-nearest neighbor graphs: a roadmap »
Ulrike von Luxburg · Morteza Alamgir -
2011 Workshop: Relations between machine learning problems - an approach to unify the field »
Robert Williamson · John Langford · Ulrike von Luxburg · Mark Reid · Jennifer Wortman Vaughan -
2010 Spotlight: Getting lost in space: Large sample analysis of the resistance distance »
Ulrike von Luxburg · Agnes Radl · Matthias Hein -
2010 Poster: Getting lost in space: Large sample analysis of the resistance distance »
Ulrike von Luxburg · Agnes Radl · Matthias Hein -
2009 Workshop: Clustering: Science or art? Towards principled approaches »
Margareta Ackerman · Shai Ben-David · Avrim Blum · Isabelle Guyon · Ulrike von Luxburg · Robert Williamson · Reza Zadeh -
2008 Poster: Influence of graph construction on graph-based clustering measures »
Markus M Maier · Ulrike von Luxburg · Matthias Hein -
2008 Oral: Influence of graph construction on graph-based clustering measures »
Markus M Maier · Ulrike von Luxburg · Matthias Hein -
2007 Session: Spotlights »
Ulrike von Luxburg -
2007 Session: Spotlights »
Ulrike von Luxburg -
2007 Spotlight: Consistent Minimization of Clustering Objective Functions »
Ulrike von Luxburg · Sebastien Bubeck · Stefanie S Jegelka · Michael Kaufmann -
2007 Poster: Consistent Minimization of Clustering Objective Functions »
Ulrike von Luxburg · Sebastien Bubeck · Stefanie S Jegelka · Michael Kaufmann