Timezone: »
We introduce an approach to learn discriminative visual representations while exploiting external semantic knowledge about object category relationships. Given a hierarchical taxonomy that captures semantic similarity between the objects, we learn a corresponding tree of metrics (ToM). In this tree, we have one metric for each non-leaf node of the object hierarchy, and each metric is responsible for discriminating among its immediate subcategory children. Specifically, a Mahalanobis metric learned for a given node must satisfy the appropriate (dis)similarity constraints generated only among its subtree members' training instances. To further exploit the semantics, we introduce a novel regularizer coupling the metrics that prefers a sparse disjoint set of features to be selected for each metric relative to its ancestor supercategory nodes' metrics. Intuitively, this reflects that visual cues most useful to distinguish the generic classes (e.g., feline vs. canine) should be different than those cues most useful to distinguish their component fine-grained classes (e.g., Persian cat vs. Siamese cat). We validate our approach with multiple image datasets using the WordNet taxonomy, show its advantages over alternative metric learning approaches, and analyze the meaning of attribute features selected by our algorithm.
Author Information
Sung Ju Hwang (University of Texas at Austin)
Kristen Grauman (University of Texas at Austin)
Fei Sha (University of Southern California (USC))
More from the Same Authors
-
2021 Spotlight: Shaping embodied agent behavior with activity-context priors from egocentric video »
Tushar Nagarajan · Kristen Grauman -
2023 Poster: EgoEnv: Human-centric environment representations from egocentric video »
Tushar Nagarajan · Santhosh Kumar Ramakrishnan · Ruta Desai · James Hillis · Kristen Grauman -
2023 Poster: Self-Supervised Visual Acoustic Matching »
Arjun Somayazulu · Changan Chen · Kristen Grauman -
2023 Poster: Video-Mined Task Graphs for Keystep Recognition in Instructional Videos »
Kumar Ashutosh · Santhosh Kumar Ramakrishnan · Triantafyllos Afouras · Kristen Grauman -
2023 Poster: Learning Fine-grained View-Invariant Representations from Unpaired Ego-Exo Videos via Temporal Alignment »
Zihui Xue · Kristen Grauman -
2023 Poster: EgoDistill: Egocentric Head Motion Distillation for Efficient Video Understanding »
Shuhan Tan · Tushar Nagarajan · Kristen Grauman -
2023 Poster: Single-Stage Visual Query Localization in Egocentric Videos »
Hanwen Jiang · Santhosh Kumar Ramakrishnan · Kristen Grauman -
2023 Poster: EgoTracks: A Long-term Egocentric Visual Object Tracking Dataset »
Hao Tang · Kevin J Liang · Kristen Grauman · Matt Feiszli · Weiyao Wang -
2023 Oral: EgoEnv: Human-centric environment representations from egocentric video »
Tushar Nagarajan · Santhosh Kumar Ramakrishnan · Ruta Desai · James Hillis · Kristen Grauman -
2022 Poster: SoundSpaces 2.0: A Simulation Platform for Visual-Acoustic Learning »
Changan Chen · Carl Schissler · Sanchit Garg · Philip Kobernik · Alexander Clegg · Paul Calamia · Dhruv Batra · Philip Robinson · Kristen Grauman -
2022 Poster: Few-Shot Audio-Visual Learning of Environment Acoustics »
Sagnik Majumder · Changan Chen · Ziad Al-Halah · Kristen Grauman -
2021 Poster: Shaping embodied agent behavior with activity-context priors from egocentric video »
Tushar Nagarajan · Kristen Grauman -
2020 : Panel Discussion & Closing »
Yejin Choi · Alexei Efros · Chelsea Finn · Kristen Grauman · Quoc V Le · Yann LeCun · Ruslan Salakhutdinov · Eric Xing -
2020 : Q & A and Panel Session with Dan Weld, Kristen Grauman, Scott Yih, Emma Brunskill, and Alex Ratner »
Kristen Grauman · Wen-tau Yih · Alexander Ratner · Emma Brunskill · Douwe Kiela · Daniel S. Weld -
2020 : QA: Kristen Grauman »
Kristen Grauman -
2020 : Invited Talk: Kristen Grauman »
Kristen Grauman -
2020 Poster: Learning Affordance Landscapes for Interaction Exploration in 3D Environments »
Tushar Nagarajan · Kristen Grauman -
2020 Spotlight: Learning Affordance Landscapes for Interaction Exploration in 3D Environments »
Tushar Nagarajan · Kristen Grauman -
2020 Session: Orals & Spotlights Track 01: Representation/Relational »
Laurens van der Maaten · Fei Sha -
2018 Poster: Synthesize Policies for Transfer and Adaptation across Tasks and Environments »
Hexiang Hu · Liyu Chen · Boqing Gong · Fei Sha -
2018 Spotlight: Synthesize Policies for Transfer and Adaptation across Tasks and Environments »
Hexiang Hu · Liyu Chen · Boqing Gong · Fei Sha -
2017 Workshop: Optimal Transport and Machine Learning »
Olivier Bousquet · Marco Cuturi · Gabriel Peyré · Fei Sha · Justin Solomon -
2017 Poster: Learning Spherical Convolution for Fast Features from 360° Imagery »
Yu-Chuan Su · Kristen Grauman -
2017 Poster: An Empirical Study on The Properties of Random Bases for Kernel Methods »
Maximilian Alber · Pieter-Jan Kindermans · Kristof Schütt · Klaus-Robert Müller · Fei Sha -
2015 : Do Shallow Kernel Methods Match Deep Neural Networks »
Fei Sha -
2015 : Do Shallow Kernel Methods Match Deep Neural Networks? »
Fei Sha -
2014 Poster: Diverse Sequential Subset Selection for Supervised Video Summarization »
Boqing Gong · Wei-Lun Chao · Kristen Grauman · Fei Sha -
2014 Poster: Predicting Useful Neighborhoods for Lazy Local Learning »
Aron Yu · Kristen Grauman -
2014 Poster: Zero-shot recognition with unreliable attributes »
Dinesh Jayaraman · Kristen Grauman -
2013 Workshop: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks »
Urun Dogan · Marius Kloft · Tatiana Tommasi · Francesco Orabona · Massimiliano Pontil · Sinno Jialin Pan · Shai Ben-David · Arthur Gretton · Fei Sha · Marco Signoretto · Rajhans Samdani · Yun-Qian Miao · Mohammad Gheshlaghi azar · Ruth Urner · Christoph Lampert · Jonathan How -
2013 Poster: Reshaping Visual Datasets for Domain Adaptation »
Boqing Gong · Kristen Grauman · Fei Sha -
2013 Poster: Similarity Component Analysis »
Soravit Changpinyo · Kuan Liu · Fei Sha -
2012 Poster: Non-linear Metric Learning »
Dor Kedem · Stephen Tyree · Kilian Q Weinberger · Fei Sha · Gert Lanckriet -
2012 Session: Oral Session 5 »
Fei Sha -
2012 Poster: Semantic Kernel Forests from Multiple Taxonomies »
Sung Ju Hwang · Kristen Grauman · Fei Sha -
2010 Workshop: Challenges of Data Visualization »
Barbara Hammer · Laurens van der Maaten · Fei Sha · Alexander Smola -
2010 Poster: Hashing Hyperplane Queries to Near Points with Applications to Large-Scale Active Learning »
Prateek Jain · Sudheendra Vijayanarasimhan · Kristen Grauman -
2010 Poster: Unsupervised Kernel Dimension Reduction »
Meihong Wang · Fei Sha · Michael Jordan -
2009 Workshop: Statistical Machine Learning for Visual Analytics »
Guy Lebanon · Fei Sha -
2008 Oral: Multi-Level Active Prediction of Useful Image Annotations for Recognition »
Sudheendra N Vijayanarasimhan · Kristen Grauman -
2008 Poster: Multi-Level Active Prediction of Useful Image Annotations for Recognition »
Sudheendra N Vijayanarasimhan · Kristen Grauman -
2008 Poster: Online Metric Learning and Fast Similarity Search »
Prateek Jain · Brian Kulis · Inderjit Dhillon · Kristen Grauman -
2008 Poster: DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification »
Simon Lacoste-Julien · Fei Sha · Michael Jordan -
2008 Oral: Online Metric Learning and Fast Similarity Search »
Prateek Jain · Brian Kulis · Inderjit Dhillon · Kristen Grauman -
2008 Session: Oral session 1: Clustering »
Fei Sha -
2007 Workshop: Machine Learning for Systems Problems (Part 2) »
Archana Ganapathi · Sumit Basu · Fei Sha · Emre Kiciman -
2007 Workshop: Machine Learning for Systems Problems (Part 1) »
Archana Ganapathi · Sumit Basu · Fei Sha · Emre Kiciman -
2007 Session: Session 7: Systems and Applications »
Fei Sha -
2006 Poster: Large Margin Gaussian Mixture Models for Automatic Speech Recognition »
Fei Sha · Lawrence Saul -
2006 Poster: Approximate Correspondences in High Dimensions »
Kristen Grauman · Trevor Darrell -
2006 Spotlight: Approximate Correspondences in High Dimensions »
Kristen Grauman · Trevor Darrell -
2006 Talk: Large Margin Gaussian Mixture Models for Automatic Speech Recognition »
Fei Sha · Lawrence Saul -
2006 Poster: Graph Regularization for Maximum Variance Unfolding with an Application to Sensor Localization »
Kilian Q Weinberger · Fei Sha · Qihui Zhu · Lawrence Saul