Timezone: »

 
Poster
Iterative Learning for Reliable Crowdsourcing Systems
David R Karger · Sewoong Oh · Devavrat Shah

Wed Dec 14 08:45 AM -- 02:59 PM (PST) @

Crowdsourcing systems, in which tasks are electronically distributed to numerous ``information piece-workers'', have emerged as an effective paradigm for human-powered solving of large scale problems in domains such as image classification, data entry, optical character recognition, recommendation, and proofreading. Because these low-paid workers can be unreliable, nearly all crowdsourcers must devise schemes to increase confidence in their answers, typically by assigning each task multiple times and combining the answers in some way such as majority voting. In this paper, we consider a general model of such rowdsourcing tasks, and pose the problem of minimizing the total price (i.e., number of task assignments) that must be paid to achieve a target overall reliability. We give new algorithms for deciding which tasks to assign to which workers and for inferring correct answers from the workers’ answers. We show that our algorithm significantly outperforms majority voting and, in fact, are asymptotically optimal through comparison to an oracle that knows the reliability of every worker.

Author Information

David R Karger (MIT)
Sewoong Oh (University of Washington)
Devavrat Shah (Massachusetts Institute of Technology)

Devavrat Shah is a professor of Electrical Engineering & Computer Science and Director of Statistics and Data Science at MIT. He received PhD in Computer Science from Stanford. He received Erlang Prize from Applied Probability Society of INFORMS in 2010 and NeuIPS best paper award in 2008.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors