Timezone: »
Efficient coding provides a powerful principle for explaining early sensory coding. Most attempts to test this principle have been limited to linear, noiseless models, and when applied to natural images, have yielded oriented filters consistent with responses in primary visual cortex. Here we show that an efficient coding model that incorporates biologically realistic ingredients -- input and output noise, nonlinear response functions, and a metabolic cost on the firing rate -- predicts receptive fields and response nonlinearities similar to those observed in the retina. Specifically, we develop numerical methods for simultaneously learning the linear filters and response nonlinearities of a population of model neurons, so as to maximize information transmission subject to metabolic costs. When applied to an ensemble of natural images, the method yields filters that are center-surround and nonlinearities that are rectifying. The filters are organized into two populations, with On- and Off-centers, which independently tile the visual space. As observed in the primate retina, the Off-center neurons are more numerous and have filters with smaller spatial extent. In the absence of noise, our method reduces to a generalized version of independent components analysis, with an adapted nonlinear ``contrast'' function; in this case, the optimal filters are localized and oriented.
Author Information
yan karklin (Knewton)
Eero Simoncelli (FlatIron Institute / New York University)
Eero P. Simoncelli received the B.S. degree in Physics in 1984 from Harvard University, studied applied mathematics at Cambridge University for a year and a half, and then received the M.S. degree in 1988 and the Ph.D. degree in 1993, both in Electrical Engineering from the Massachusetts Institute of Technology. He was an Assistant Professor in the Computer and Information Science department at the University of Pennsylvania from 1993 until 1996. He moved to New York University in September of 1996, where he is currently a Professor in Neural Science, Mathematics, and Psychology. In August 2000, he became an Associate Investigator of the Howard Hughes Medical Institute, under their new program in Computational Biology. In Fall 2020, he resigned his HHMI appointment to become the scientific director of the Center for Computational Neuroscience at the Flatiron Institute, of the Simons Foundation. His research interests span a wide range of topics in the representation and analysis of visual images, in both machine and biological systems.
More from the Same Authors
-
2022 : Fine-tuning hierarchical circuits through learned stochastic co-modulation »
Caroline Haimerl · Eero Simoncelli · Cristina Savin -
2023 : Strong generalization in diffusion models »
Zahra Kadkhodaie · Florentin Guth · Eero Simoncelli · Stephane Mallat -
2023 : Comparing neural models using their perceptual discriminability predictions »
Jingyang Zhou · Chanwoo Chun · Ajay Subramanian · Eero Simoncelli -
2023 : Comparing neural models using their perceptual discriminability predictions »
Jingyang Zhou · Chanwoo Chun · Ajay Subramanian · Eero Simoncelli -
2023 Poster: Adaptive whitening with fast gain modulation and slow synaptic plasticity »
Lyndon Duong · Eero Simoncelli · Dmitri Chklovskii · David Lipshutz -
2023 Poster: Learning Efficient Coding of Natural Images with Maximum Manifold Capacity Representations »
Thomas Yerxa · Yilun Kuang · Eero Simoncelli · SueYeon Chung -
2023 Poster: A polar prediction model for learning to represent visual transformations »
Pierre-Étienne Fiquet · Eero Simoncelli -
2022 : Fine-tuning hierarchical circuits through learned stochastic co-modulation »
Caroline Haimerl · Eero Simoncelli · Cristina Savin -
2022 Poster: Maximum a posteriori natural scene reconstruction from retinal ganglion cells with deep denoiser priors »
Eric Wu · Nora Brackbill · Alexander Sher · Alan Litke · Eero Simoncelli · E.J. Chichilnisky -
2021 Poster: Adaptive Denoising via GainTuning »
Sreyas Mohan · Joshua L Vincent · Ramon Manzorro · Peter Crozier · Carlos Fernandez-Granda · Eero Simoncelli -
2021 Poster: Stochastic Solutions for Linear Inverse Problems using the Prior Implicit in a Denoiser »
Zahra Kadkhodaie · Eero Simoncelli -
2021 Poster: Impression learning: Online representation learning with synaptic plasticity »
Colin Bredenberg · Benjamin Lyo · Eero Simoncelli · Cristina Savin -
2020 Poster: Learning efficient task-dependent representations with synaptic plasticity »
Colin Bredenberg · Eero Simoncelli · Cristina Savin -
2019 : Local gain control and perceptual invariances »
Eero Simoncelli -
2019 : Poster Session »
Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie -
2019 Poster: Flexible information routing in neural populations through stochastic comodulation »
Caroline Haimerl · Cristina Savin · Eero Simoncelli -
2017 Poster: Eigen-Distortions of Hierarchical Representations »
Alexander Berardino · Valero Laparra · Johannes Ballé · Eero Simoncelli -
2017 Oral: Eigen-Distortions of Hierarchical Representations »
Alexander Berardino · Valero Laparra · Johannes Ballé · Eero Simoncelli -
2012 Poster: Efficient and direct estimation of a neural subunit model for sensory coding »
Brett Vintch · Andrew Zaharia · J Movshon · Eero Simoncelli -
2012 Poster: Hierarchical spike coding of sound »
yan karklin · Chaitanya Ekanadham · Eero Simoncelli -
2012 Spotlight: Hierarchical spike coding of sound »
yan karklin · Chaitanya Ekanadham · Eero Simoncelli -
2011 Poster: A blind sparse deconvolution method for neural spike identification »
Chaitanya Ekanadham · Daniel Tranchina · Eero Simoncelli -
2011 Spotlight: A blind sparse deconvolution method for neural spike identification »
Chaitanya Ekanadham · Daniel Tranchina · Eero Simoncelli -
2010 Poster: Implicit encoding of prior probabilities in optimal neural populations »
Deep Ganguli · Eero Simoncelli -
2009 Poster: Hierarchical Modeling of Local Image Features through $L_p$-Nested Symmetric Distributions »
Fabian H Sinz · Eero Simoncelli · Matthias Bethge -
2008 Oral: Reducing statistical dependencies in natural signals using radial Gaussianization »
Siwei Lyu · Eero Simoncelli -
2008 Poster: Reducing statistical dependencies in natural signals using radial Gaussianization »
Siwei Lyu · Eero Simoncelli -
2008 Tutorial: Statistical Models of Visual Images »
Eero Simoncelli -
2007 Poster: A Bayesian Model of Conditioned Perception »
Alan A Stocker · Eero Simoncelli -
2006 Poster: Statistical Modeling of Images with Fields of Gaussian Scale Mixtures »
Siwei Lyu · Eero Simoncelli -
2006 Poster: Learning to be Bayesian without Supervision »
Martin Raphan · Eero Simoncelli