Timezone: »
Domain adaptation algorithms seek to generalize a model trained in a source domain to a new target domain. In many practical cases, the source and target distributions can differ substantially, and in some cases crucial target features may not have support in the source domain. In this paper we introduce an algorithm that bridges the gap between source and target domains by slowly adding both the target features and instances in which the current algorithm is the most confident. Our algorithm is a variant of co-training, and we name it CODA (Co-training for domain adaptation). Unlike the original co-training work, we do not assume a particular feature split. Instead, for each iteration of co-training, we add target features and formulate a single optimization problem which simultaneously learns a target predictor, a split of the feature space into views, and a shared subset of source and target features to include in the predictor. CODA significantly out-performs the state-of-the-art on the 12-domain benchmark data set of Blitzer et al.. Indeed, over a wide range (65 of 84 comparisons) of target supervision, ranging from no labeled target data to a relatively large number of target labels, CODA achieves the best performance.
Author Information
Minmin Chen (Amazon Inc.)
Kilian Q Weinberger (Cornell University / ASAPP Research)
John Blitzer (Google Research)
More from the Same Authors
-
2015 Poster: Fast Distributed k-Center Clustering with Outliers on Massive Data »
Gustavo Malkomes · Matt J Kusner · Wenlin Chen · Kilian Q Weinberger · Benjamin Moseley -
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2012 Poster: Non-linear Metric Learning »
Dor Kedem · Stephen Tyree · Kilian Q Weinberger · Fei Sha · Gert Lanckriet -
2011 Workshop: Domain Adaptation Workshop: Theory and Application »
John Blitzer · Corinna Cortes · Afshin Rostamizadeh -
2011 Workshop: Beyond Mahalanobis: Supervised Large-Scale Learning of Similarity »
Greg Shakhnarovich · Dhruv Batra · Brian Kulis · Kilian Q Weinberger -
2010 Session: Oral Session 16 »
Kilian Q Weinberger -
2010 Poster: Large Margin Multi-Task Metric Learning »
Shibin Parameswaran · Kilian Q Weinberger -
2010 Poster: Decoding Ipsilateral Finger Movements from ECoG Signals in Humans »
Yuzong Liu · Mohit Sharma · Charles M Gaona · Jonathan D Breshears · jarod Roland · zachary V Freudenburg · Kilian Q Weinberger · Eric C Leuthardt -
2008 Poster: Large Margin Taxonomy Embedding for Document Categorization »
Kilian Q Weinberger · Olivier Chapelle -
2008 Spotlight: Large Margin Taxonomy Embedding for Document Categorization »
Kilian Q Weinberger · Olivier Chapelle -
2006 Workshop: Novel Applications of Dimensionality Reduction »
John Blitzer · Rajarshi Das · Irina Rish · Kilian Q Weinberger -
2006 Poster: Graph Regularization for Maximum Variance Unfolding with an Application to Sensor Localization »
Kilian Q Weinberger · Fei Sha · Qihui Zhu · Lawrence Saul