Timezone: »
Multi-task learning (MTL) learns multiple related tasks simultaneously to improve generalization performance. Alternating structure optimization (ASO) is a popular MTL method that learns a shared low-dimensional predictive structure on hypothesis spaces from multiple related tasks. It has been applied successfully in many real world applications. As an alternative MTL approach, clustered multi-task learning (CMTL) assumes that multiple tasks follow a clustered structure, i.e., tasks are partitioned into a set of groups where tasks in the same group are similar to each other, and that such a clustered structure is unknown a priori. The objectives in ASO and CMTL differ in how multiple tasks are related. Interestingly, we show in this paper the equivalence relationship between ASO and CMTL, providing significant new insights into ASO and CMTL as well as their inherent relationship. The CMTL formulation is non-convex, and we adopt a convex relaxation to the CMTL formulation. We further establish the equivalence relationship between the proposed convex relaxation of CMTL and an existing convex relaxation of ASO, and show that the proposed convex CMTL formulation is significantly more efficient especially for high-dimensional data. In addition, we present three algorithms for solving the convex CMTL formulation. We report experimental results on benchmark datasets to demonstrate the efficiency of the proposed algorithms.
Author Information
Jiayu Zhou (Arizona State University)
Jianhui Chen (GE Global Research)
Jieping Ye (Arizona State University)
More from the Same Authors
-
2014 Poster: Two-Layer Feature Reduction for Sparse-Group Lasso via Decomposition of Convex Sets »
Jie Wang · Jieping Ye -
2014 Spotlight: Two-Layer Feature Reduction for Sparse-Group Lasso via Decomposition of Convex Sets »
Jie Wang · Jieping Ye -
2014 Poster: A Safe Screening Rule for Sparse Logistic Regression »
Jie Wang · Jiayu Zhou · Jun Liu · Peter Wonka · Jieping Ye -
2013 Poster: Lasso Screening Rules via Dual Polytope Projection »
Jie Wang · Jiayu Zhou · Peter Wonka · Jieping Ye -
2013 Spotlight: Lasso Screening Rules via Dual Polytope Projection »
Jie Wang · Jiayu Zhou · Peter Wonka · Jieping Ye -
2012 Poster: Multi-Stage Multi-Task Feature Learning »
Pinghua Gong · Jieping Ye · Changshui Zhang -
2012 Poster: Multi-task Vector Field Learning »
Binbin Lin · Sen Yang · Chiyuan Zhang · Jieping Ye · Xiaofei He -
2012 Spotlight: Multi-Stage Multi-Task Feature Learning »
Pinghua Gong · Jieping Ye · Changshui Zhang -
2012 Poster: Generalization Bounds for Domain Adaptation »
Chao Zhang · Jieping Ye · Lei Zhang -
2011 Poster: Efficient Methods for Overlapping Group Lasso »
Lei Yuan · Jun Liu · Jieping Ye -
2011 Poster: Projection onto A Nonnegative Max-Heap »
Jun Liu · Liang Sun · Jieping Ye -
2011 Spotlight: Projection onto A Nonnegative Max-Heap »
Jun Liu · Liang Sun · Jieping Ye -
2011 Poster: A Two-Stage Weighting Framework for Multi-Source Domain Adaptation »
Qian Sun · Rita Chattopadhyay · Sethuraman Panchanathan · Jieping Ye -
2011 Poster: Identifying Alzheimer's Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis »
Shuai Huang · Jing Li · Jieping Ye · Teresa Wu · Kewei Chen · Adam Fleisher · Eric Reiman -
2011 Spotlight: Identifying Alzheimer's Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis »
Shuai Huang · Jing Li · Jieping Ye · Teresa Wu · Kewei Chen · Adam Fleisher · Eric Reiman -
2010 Poster: Moreau-Yosida Regularization for Grouped Tree Structure Learning »
Jun Liu · Jieping Ye -
2010 Poster: Multi-Stage Dantzig Selector »
Ji Liu · Peter Wonka · Jieping Ye -
2009 Poster: Learning Brain Connectivity of Alzheimer's Disease from Neuroimaging Data »
Shuai Huang · Jing Li · Liang Sun · Jun Liu · Teresa Wu · Kewei Chen · Adam Fleisher · Eric Reiman · Jieping Ye -
2009 Spotlight: Learning Brain Connectivity of Alzheimer's Disease from Neuroimaging Data »
Shuai Huang · Jing Li · Liang Sun · Jun Liu · Teresa Wu · Kewei Chen · Adam Fleisher · Eric Reiman · Jieping Ye -
2009 Poster: Efficient Recovery of Jointly Sparse Vectors »
Liang Sun · Jun Liu · Jianhui Chen · Jieping Ye -
2008 Poster: Multi-label Multiple Kernel Learning »
Shuiwang Ji · Liang Sun · Rong Jin · Jieping Ye -
2008 Spotlight: Multi-label Multiple Kernel Learning »
Shuiwang Ji · Liang Sun · Rong Jin · Jieping Ye -
2007 Poster: Discriminative K-means for Clustering »
Jieping Ye · Zheng Zhao · Mingrui Wu