Timezone: »
We introduce a Gaussian process model of functions which are additive. An additive function is one which decomposes into a sum of low-dimensional functions, each depending on only a subset of the input variables. Additive GPs generalize both Generalized Additive Models, and the standard GP models which use squared-exponential kernels. Hyperparameter learning in this model can be seen as Bayesian Hierarchical Kernel Learning (HKL). We introduce an expressive but tractable parameterization of the kernel function, which allows efficient evaluation of all input interaction terms, whose number is exponential in the input dimension. The additional structure discoverable by this model results in increased interpretability, as well as state-of-the-art predictive power in regression tasks.
Author Information
David Duvenaud (University of Toronto)
Hannes Nickisch (Philips Research)
Carl Edward Rasmussen (University of Cambridge)
More from the Same Authors
-
2022 : Gaussian Process parameterized Covariance Kernels for Non-stationary Regression »
Vidhi Lalchand · Talay Cheema · Laurence Aitchison · Carl Edward Rasmussen -
2022 Poster: Sparse Gaussian Process Hyperparameters: Optimize or Integrate? »
Vidhi Lalchand · Wessel Bruinsma · David Burt · Carl Edward Rasmussen -
2021 Poster: Meta-learning to Improve Pre-training »
Aniruddh Raghu · Jonathan Lorraine · Simon Kornblith · Matthew McDermott · David Duvenaud -
2021 Poster: Kernel Identification Through Transformers »
Fergus Simpson · Ian Davies · Vidhi Lalchand · Alessandro Vullo · Nicolas Durrande · Carl Edward Rasmussen -
2021 Poster: Marginalised Gaussian Processes with Nested Sampling »
Fergus Simpson · Vidhi Lalchand · Carl Edward Rasmussen -
2020 : Combining variational autoencoder representations with structural descriptors improves prediction of docking scores »
Miguel Garcia-Ortegon · Carl Edward Rasmussen · Hiroshi Kajino -
2020 Poster: Ensembling geophysical models with Bayesian Neural Networks »
Ushnish Sengupta · Matt Amos · Scott Hosking · Carl Edward Rasmussen · Matthew Juniper · Paul Young -
2017 Poster: Convolutional Gaussian Processes »
Mark van der Wilk · Carl Edward Rasmussen · James Hensman -
2017 Oral: Convolutional Gaussian Processes »
Mark van der Wilk · Carl Edward Rasmussen · James Hensman -
2017 Poster: Data-Efficient Reinforcement Learning in Continuous State-Action Gaussian-POMDPs »
Rowan McAllister · Carl Edward Rasmussen -
2017 Poster: Scalable Log Determinants for Gaussian Process Kernel Learning »
Kun Dong · David Eriksson · Hannes Nickisch · David Bindel · Andrew Wilson -
2016 : Generating Class-conditional Images with Gradient-based Inference »
David Duvenaud -
2016 : David Duvenaud – No more mini-languages: The power of autodiffing full-featured Python »
David Duvenaud -
2016 Workshop: Reliable Machine Learning in the Wild »
Dylan Hadfield-Menell · Adrian Weller · David Duvenaud · Jacob Steinhardt · Percy Liang -
2016 Poster: Understanding Probabilistic Sparse Gaussian Process Approximations »
Matthias Bauer · Mark van der Wilk · Carl Edward Rasmussen -
2016 Poster: Composing graphical models with neural networks for structured representations and fast inference »
Matthew Johnson · David Duvenaud · Alex Wiltschko · Ryan Adams · Sandeep R Datta -
2016 Poster: Probing the Compositionality of Intuitive Functions »
Eric Schulz · Josh Tenenbaum · David Duvenaud · Maarten Speekenbrink · Samuel J Gershman -
2015 : *David Duvenaud* Automatic Differentiation: The most criminally underused tool in probabilistic numerics »
David Duvenaud -
2015 Poster: Convolutional Networks on Graphs for Learning Molecular Fingerprints »
David Duvenaud · Dougal Maclaurin · Jorge Iparraguirre · Rafael Bombarell · Timothy Hirzel · Alan Aspuru-Guzik · Ryan Adams -
2014 Poster: Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models »
Yarin Gal · Mark van der Wilk · Carl Edward Rasmussen -
2014 Poster: Probabilistic ODE Solvers with Runge-Kutta Means »
Michael Schober · David Duvenaud · Philipp Hennig -
2014 Oral: Probabilistic ODE Solvers with Runge-Kutta Means »
Michael Schober · David Duvenaud · Philipp Hennig -
2014 Poster: Variational Gaussian Process State-Space Models »
Roger Frigola · Yutian Chen · Carl Edward Rasmussen -
2013 Poster: Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC »
Roger Frigola · Fredrik Lindsten · Thomas Schön · Carl Edward Rasmussen -
2012 Poster: Active Learning of Model Evidence Using Bayesian Quadrature »
Michael A Osborne · David Duvenaud · Roman Garnett · Carl Edward Rasmussen · Stephen J Roberts · Zoubin Ghahramani -
2011 Poster: Gaussian Process Training with Input Noise »
Andrew McHutchon · Carl Edward Rasmussen -
2009 Workshop: Probabilistic Approaches for Control and Robotics »
Marc Deisenroth · Hilbert J Kappen · Emo Todorov · Duy Nguyen-Tuong · Carl Edward Rasmussen · Jan Peters -
2008 Poster: Bayesian Experimental Design of Magnetic Resonance Imaging Sequences »
Matthias Seeger · Hannes Nickisch · Rolf Pohmann · Bernhard Schölkopf -
2008 Spotlight: Bayesian Experimental Design of Magnetic Resonance Imaging Sequences »
Matthias Seeger · Hannes Nickisch · Rolf Pohmann · Bernhard Schölkopf -
2006 Tutorial: Advances in Gaussian Processes »
Carl Edward Rasmussen