Timezone: »
Poster
A Model for Temporal Dependencies in Event Streams
Asela Gunawardana · Christopher Meek · Puyang Xu
We introduce the Piecewise-Constant Conditional Intensity Model, a model for learning temporal dependencies in event streams. We describe a closed-form Bayesian approach to learning these models, and describe an importance sampling algorithm for forecasting future events using these models, using a proposal distribution based on Poisson superposition. We then use synthetic data, supercomputer event logs, and web search query logs to illustrate that our learning algorithm can efficiently learn nonlinear temporal dependencies, and that our importance sampling algorithm can effectively forecast future events.
Author Information
Asela Gunawardana (Microsoft Research)
Christopher Meek (Microsoft Research)
Puyang Xu (Johns Hopkins University)
More from the Same Authors
-
2021 : Few-Shot Learning Evaluation in Natural Language Understanding »
Subhabrata Mukherjee · Xiaodong Liu · Guoqing Zheng · Saghar Hosseini · Hao Cheng · Ge Yang · Christopher Meek · Ahmed Awadallah · Jianfeng Gao -
2020 Workshop: Causal Discovery and Causality-Inspired Machine Learning »
Biwei Huang · Sara Magliacane · Kun Zhang · Danielle Belgrave · Elias Bareinboim · Daniel Malinsky · Thomas Richardson · Christopher Meek · Peter Spirtes · Bernhard Schölkopf -
2014 Poster: Recursive Inversion Models for Permutations »
Christopher Meek · Marina Meila -
2010 Spotlight: Exact inference and learning for cumulative distribution functions on loopy graphs »
Jim C Huang · Nebojsa Jojic · Christopher Meek -
2010 Poster: Exact inference and learning for cumulative distribution functions on loopy graphs »
Jim C Huang · Nebojsa Jojic · Christopher Meek -
2008 Poster: MAS: a multiplicative approximation scheme for probabilistic inference »
Ydo Wexler · Christopher Meek -
2008 Oral: MAS: a multiplicative approximation scheme for probabilistic inference »
Ydo Wexler · Christopher Meek