Timezone: »
In matrix completion, we are given a matrix where the values of only some of the entries are present, and we want to reconstruct the missing ones. Much work has focused on the assumption that the data matrix has low rank. We propose a more general assumption based on denoising, so that we expect that the value of a missing entry can be predicted from the values of neighboring points. We propose a nonparametric version of denoising based on local, iterated averaging with mean-shift, possibly constrained to preserve local low-rank manifold structure. The few user parameters required (the denoising scale, number of neighbors and local dimensionality) and the number of iterations can be estimated by cross-validating the reconstruction error. Using our algorithms as a postprocessing step on an initial reconstruction (provided by e.g. a low-rank method), we show consistent improvements with synthetic, image and motion-capture data.
Author Information
Weiran Wang (University of California, Merced)
Miguel A. Carreira-Perpinan (University of California, Merced)
Zhengdong Lu (Noah's Ark Lab Huawei Technologies)
More from the Same Authors
-
2022 Poster: Semi-Supervised Learning with Decision Trees: Graph Laplacian Tree Alternating Optimization »
Arman Zharmagambetov · Miguel A. Carreira-Perpinan -
2018 Poster: Alternating optimization of decision trees, with application to learning sparse oblique trees »
Miguel A. Carreira-Perpinan · Pooya Tavallali -
2017 : Poster Session 2 »
Farhan Shafiq · Antonio Tomas Nevado Vilchez · Takato Yamada · Sakyasingha Dasgupta · Robin Geyer · Moin Nabi · Crefeda Rodrigues · Edoardo Manino · Alexantrou Serb · Miguel A. Carreira-Perpinan · Kar Wai Lim · Bryan Kian Hsiang Low · Rohit Pandey · Marie C White · Pavel Pidlypenskyi · Xue Wang · Christine Kaeser-Chen · Michael Zhu · Suyog Gupta · Sam Leroux -
2017 : Poster Session (encompasses coffee break) »
Beidi Chen · Borja Balle · Daniel Lee · iuri frosio · Jitendra Malik · Jan Kautz · Ke Li · Masashi Sugiyama · Miguel A. Carreira-Perpinan · Ramin Raziperchikolaei · Theja Tulabandhula · Yung-Kyun Noh · Adams Wei Yu -
2016 Poster: An ensemble diversity approach to supervised binary hashing »
Miguel A. Carreira-Perpinan · Ramin Raziperchikolaei -
2016 Poster: Efficient Globally Convergent Stochastic Optimization for Canonical Correlation Analysis »
Weiran Wang · Jialei Wang · Dan Garber · Dan Garber · Nati Srebro -
2016 Poster: Optimizing affinity-based binary hashing using auxiliary coordinates »
Ramin Raziperchikolaei · Miguel A. Carreira-Perpinan -
2015 Poster: A fast, universal algorithm to learn parametric nonlinear embeddings »
Miguel A. Carreira-Perpinan · Max Vladymyrov -
2008 Poster: Hierarchical Fisher Kernels for Longitudinal Data »
Zhengdong Lu · Todd K Leen · Jeffrey Kaye -
2007 Poster: People Tracking with the Laplacian Eigenmaps Latent Variable Model »
Zhengdong Lu · Miguel A. Carreira-Perpinan · Cristian Sminchisescu