Timezone: »
Sustainability problems pose one of the greatest challenges facing society. Humans consume more than 16TW of power, about 84% of which comes from unsustainable fossil fuels. In addition to simply being a finite resource, the carbon released from fossil fuels is a significant driver of climate change and could have a profound impact on our environment. In addition to carbon releases, humans are modifying the ecosphere in many ways that are leading to large changes in the function and structure of ecosystems. These include huge releases of nitrogen from fertilizers, the collapse and extinction of many species, and the unsustainable harvest of natural resources (e.g., fish, timber). While sustainability problems span many disciplines, several tasks in this space are fundamentally prediction, modeling, and control tasks, areas where machine learning can have a large impact. Many of these problems also require the development of novel machine learning methods, particularly methods that can scale to very large spatio-temporal problem instances.
In recent years there has been growing interest in applying machine to problems of sustainability, spanning applications in energy, environmental management, and climate modeling. The goal of this workshop will be to bring together researchers from both the machine learning and sustainability application fields to continue and build upon this emerging area. The talks and posters will span general discussions of sustainability issues, specific sustainability-related data sets and problem domains, and ongoing work on developing and applying machine learning techniques to these tasks.
Author Information
Thomas Dietterich (Oregon State University)
Tom Dietterich (AB Oberlin College 1977; MS University of Illinois 1979; PhD Stanford University 1984) is Professor and Director of Intelligent Systems Research at Oregon State University. Among his contributions to machine learning research are (a) the formalization of the multiple-instance problem, (b) the development of the error-correcting output coding method for multi-class prediction, (c) methods for ensemble learning, (d) the development of the MAXQ framework for hierarchical reinforcement learning, and (e) the application of gradient tree boosting to problems of structured prediction and latent variable models. Dietterich has pursued application-driven fundamental research in many areas including drug discovery, computer vision, computational sustainability, and intelligent user interfaces. Dietterich has served the machine learning community in a variety of roles including Executive Editor of the Machine Learning journal, co-founder of the Journal of Machine Learning Research, editor of the MIT Press Book Series on Adaptive Computation and Machine Learning, and editor of the Morgan-Claypool Synthesis series on Artificial Intelligence and Machine Learning. He was Program Co-Chair of AAAI-1990, Program Chair of NIPS-2000, and General Chair of NIPS-2001. He was first President of the International Machine Learning Society (the parent organization of ICML) and served a term on the NIPS Board of Trustees and the Council of AAAI.
J. Zico Kolter (Carnegie Mellon University / Bosch Center for AI)
Zico Kolter is an Assistant Professor in the School of Computer Science at Carnegie Mellon University, and also serves as Chief Scientist of AI Research for the Bosch Center for Artificial Intelligence. His work focuses on the intersection of machine learning and optimization, with a large focus on developing more robust, explainable, and rigorous methods in deep learning. In addition, he has worked on a number of application areas, highlighted by work on sustainability and smart energy systems. He is the recipient of the DARPA Young Faculty Award, and best paper awards at KDD, IJCAI, and PESGM.
Matthew A Brown (University of Bath)
More from the Same Authors
-
2020 : An adversarially robust approach to security-constrained optimal power flow »
Neeraj Vijay Bedmutha · Priya Donti · J. Zico Kolter -
2022 : Generative Posterior Networks for Approximately Bayesian Epistemic Uncertainty Estimation »
Melrose Roderick · Felix Berkenkamp · Fatemeh Sheikholeslami · J. Zico Kolter -
2022 : Denoised Smoothing with Sample Rejection for Robustifying Pretrained Classifiers »
Fatemeh Sheikholeslami · Wan-Yi Lin · Jan Hendrik Metzen · Huan Zhang · J. Zico Kolter -
2022 : A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and Two-Player Zero-Sum Games »
Samuel Sokota · Ryan D'Orazio · J. Zico Kolter · Nicolas Loizou · Marc Lanctot · Ioannis Mitliagkas · Noam Brown · Christian Kroer -
2022 : Uncertainty-Driven Exploration for Generalization in Reinforcement Learning »
Yiding Jiang · J. Zico Kolter · Roberta Raileanu -
2022 : Improving Adversarial Robustness via Joint Classification and Multiple Explicit Detection Classes »
Sina Baharlouei · Fatemeh Sheikholeslami · Meisam Razaviyayn · J. Zico Kolter -
2023 Workshop: XAI in Action: Past, Present, and Future Applications »
Chhavi Yadav · Michal Moshkovitz · Nave Frost · Suraj Srinivas · Bingqing Chen · Valentyn Boreiko · Himabindu Lakkaraju · J. Zico Kolter · Dotan Di Castro · Kamalika Chaudhuri -
2022 Workshop: Trustworthy and Socially Responsible Machine Learning »
Huan Zhang · Linyi Li · Chaowei Xiao · J. Zico Kolter · Anima Anandkumar · Bo Li -
2022 : Zico Kolter, Adapt like you train: How optimization at training time affects model finetuning and adaptation »
J. Zico Kolter -
2022 Poster: Characterizing Datapoints via Second-Split Forgetting »
Pratyush Maini · Saurabh Garg · Zachary Lipton · J. Zico Kolter -
2022 Poster: Learning Options via Compression »
Yiding Jiang · Evan Liu · Benjamin Eysenbach · J. Zico Kolter · Chelsea Finn -
2022 Poster: Efficiently Computing Local Lipschitz Constants of Neural Networks via Bound Propagation »
Zhouxing Shi · Yihan Wang · Huan Zhang · J. Zico Kolter · Cho-Jui Hsieh -
2022 Poster: Test Time Adaptation via Conjugate Pseudo-labels »
Sachin Goyal · Mingjie Sun · Aditi Raghunathan · J. Zico Kolter -
2022 Poster: Deep Equilibrium Approaches to Diffusion Models »
Ashwini Pokle · Zhengyang Geng · J. Zico Kolter -
2022 Poster: Agreement-on-the-line: Predicting the Performance of Neural Networks under Distribution Shift »
Christina Baek · Yiding Jiang · Aditi Raghunathan · J. Zico Kolter -
2022 Poster: General Cutting Planes for Bound-Propagation-Based Neural Network Verification »
Huan Zhang · Shiqi Wang · Kaidi Xu · Linyi Li · Bo Li · Suman Jana · Cho-Jui Hsieh · J. Zico Kolter -
2022 Poster: Path Independent Equilibrium Models Can Better Exploit Test-Time Computation »
Cem Anil · Ashwini Pokle · Kaiqu Liang · Johannes Treutlein · Yuhuai Wu · Shaojie Bai · J. Zico Kolter · Roger Grosse -
2022 Poster: The Pitfalls of Regularization in Off-Policy TD Learning »
Gaurav Manek · J. Zico Kolter -
2021 : Panel B: Safe Learning and Decision Making in Uncertain and Unstructured Environments »
Yisong Yue · J. Zico Kolter · Ivan Dario D Jimenez Rodriguez · Dragos Margineantu · Animesh Garg · Melissa Greeff -
2021 : Enforcing Robustness for Neural Network Policies »
J. Zico Kolter -
2021 Poster: Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification »
Shiqi Wang · Huan Zhang · Kaidi Xu · Xue Lin · Suman Jana · Cho-Jui Hsieh · J. Zico Kolter -
2021 Poster: Joint inference and input optimization in equilibrium networks »
Swaminathan Gurumurthy · Shaojie Bai · Zachary Manchester · J. Zico Kolter -
2021 Poster: $(\textrm{Implicit})^2$: Implicit Layers for Implicit Representations »
Zhichun Huang · Shaojie Bai · J. Zico Kolter -
2021 Poster: Boosted CVaR Classification »
Runtian Zhai · Chen Dan · Arun Suggala · J. Zico Kolter · Pradeep Ravikumar -
2021 Poster: Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds »
Yujia Huang · Huan Zhang · Yuanyuan Shi · J. Zico Kolter · Anima Anandkumar -
2021 Poster: Adversarially robust learning for security-constrained optimal power flow »
Priya Donti · Aayushya Agarwal · Neeraj Vijay Bedmutha · Larry Pileggi · J. Zico Kolter -
2021 Poster: Robustness between the worst and average case »
Leslie Rice · Anna Bair · Huan Zhang · J. Zico Kolter -
2021 Poster: Monte Carlo Tree Search With Iteratively Refining State Abstractions »
Samuel Sokota · Caleb Y Ho · Zaheen Ahmad · J. Zico Kolter -
2020 : Mini-panel discussion 3 - Prioritizing Real World RL Challenges »
Chelsea Finn · Thomas Dietterich · Angela Schoellig · Anca Dragan · Anusha Nagabandi · Doina Precup -
2020 : Keynote: Tom Diettrich »
Thomas Dietterich -
2020 : Invited Talk (Zico Kolter) »
J. Zico Kolter -
2020 Workshop: Machine Learning for Engineering Modeling, Simulation and Design »
Alex Beatson · Priya Donti · Amira Abdel-Rahman · Stephan Hoyer · Rose Yu · J. Zico Kolter · Ryan Adams -
2020 : Keynote by Zico Kolter »
J. Zico Kolter -
2020 Poster: Community detection using fast low-cardinality semidefinite programming
 »
Po-Wei Wang · J. Zico Kolter -
2020 Poster: Deep Archimedean Copulas »
Chun Kai Ling · Fei Fang · J. Zico Kolter -
2020 Tutorial: (Track3) Deep Implicit Layers: Neural ODEs, Equilibrium Models, and Differentiable Optimization Q&A »
David Duvenaud · J. Zico Kolter · Matthew Johnson -
2020 Poster: Efficient semidefinite-programming-based inference for binary and multi-class MRFs »
Chirag Pabbaraju · Po-Wei Wang · J. Zico Kolter -
2020 Spotlight: Efficient semidefinite-programming-based inference for binary and multi-class MRFs »
Chirag Pabbaraju · Po-Wei Wang · J. Zico Kolter -
2020 Poster: Multiscale Deep Equilibrium Models »
Shaojie Bai · Vladlen Koltun · J. Zico Kolter -
2020 Poster: Denoised Smoothing: A Provable Defense for Pretrained Classifiers »
Hadi Salman · Mingjie Sun · Greg Yang · Ashish Kapoor · J. Zico Kolter -
2020 Poster: Monotone operator equilibrium networks »
Ezra Winston · J. Zico Kolter -
2020 Spotlight: Monotone operator equilibrium networks »
Ezra Winston · J. Zico Kolter -
2020 Oral: Multiscale Deep Equilibrium Models »
Shaojie Bai · Vladlen Koltun · J. Zico Kolter -
2020 Tutorial: (Track3) Deep Implicit Layers: Neural ODEs, Equilibrium Models, and Differentiable Optimization »
David Duvenaud · J. Zico Kolter · Matthew Johnson -
2019 : AI and Sustainable Development »
Fei Fang · Carla Gomes · Miguel Luengo-Oroz · Thomas Dietterich · Julien Cornebise -
2019 : Automated Quality Control for a Weather Sensor Network »
Thomas Dietterich -
2019 Poster: Learning Stable Deep Dynamics Models »
J. Zico Kolter · Gaurav Manek -
2019 Poster: Adversarial Music: Real world Audio Adversary against Wake-word Detection System »
Juncheng Li · Shuhui Qu · Xinjian Li · Joseph Szurley · J. Zico Kolter · Florian Metze -
2019 Spotlight: Adversarial Music: Real world Audio Adversary against Wake-word Detection System »
Juncheng Li · Shuhui Qu · Xinjian Li · Joseph Szurley · J. Zico Kolter · Florian Metze -
2019 Poster: Differentiable Convex Optimization Layers »
Akshay Agrawal · Brandon Amos · Shane Barratt · Stephen Boyd · Steven Diamond · J. Zico Kolter -
2019 Poster: Uniform convergence may be unable to explain generalization in deep learning »
Vaishnavh Nagarajan · J. Zico Kolter -
2019 Poster: Deep Equilibrium Models »
Shaojie Bai · J. Zico Kolter · Vladlen Koltun -
2019 Spotlight: Deep Equilibrium Models »
Shaojie Bai · J. Zico Kolter · Vladlen Koltun -
2019 Oral: Uniform convergence may be unable to explain generalization in deep learning »
Vaishnavh Nagarajan · J. Zico Kolter -
2018 : Talk 1: Zico Kolter - Differentiable Physics and Control »
J. Zico Kolter -
2018 Poster: Differentiable MPC for End-to-end Planning and Control »
Brandon Amos · Ivan Jimenez · Jacob I Sacks · Byron Boots · J. Zico Kolter -
2018 Poster: End-to-End Differentiable Physics for Learning and Control »
Filipe de Avila Belbute Peres · Kevin Smith · Kelsey Allen · Josh Tenenbaum · J. Zico Kolter -
2018 Spotlight: End-to-End Differentiable Physics for Learning and Control »
Filipe de Avila Belbute Peres · Kevin Smith · Kelsey Allen · Josh Tenenbaum · J. Zico Kolter -
2018 Poster: Scaling provable adversarial defenses »
Eric Wong · Frank Schmidt · Jan Hendrik Metzen · J. Zico Kolter -
2018 Tutorial: Adversarial Robustness: Theory and Practice »
J. Zico Kolter · Aleksander Madry -
2017 : Provable defenses against adversarial examples via the convex outer adversarial polytope »
J. Zico Kolter -
2017 Poster: Gradient descent GAN optimization is locally stable »
Vaishnavh Nagarajan · J. Zico Kolter -
2017 Oral: Gradient descent GAN optimization is locally stable »
Vaishnavh Nagarajan · J. Zico Kolter -
2017 Poster: Task-based End-to-end Model Learning in Stochastic Optimization »
Priya Donti · J. Zico Kolter · Brandon Amos -
2016 : Automated Data Cleaning via Multi-View Anomaly Detection »
Thomas Dietterich -
2016 Poster: The Multiple Quantile Graphical Model »
Alnur Ali · J. Zico Kolter · Ryan Tibshirani -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2014 Workshop: From Bad Models to Good Policies (Sequential Decision Making under Uncertainty) »
Odalric-Ambrym Maillard · Timothy A Mann · Shie Mannor · Jeremie Mary · Laurent Orseau · Thomas Dietterich · Ronald Ortner · Peter GrĂĽnwald · Joelle Pineau · Raphael Fonteneau · Georgios Theocharous · Esteban D Arcaute · Christos Dimitrakakis · Nan Jiang · Doina Precup · Pierre-Luc Bacon · Marek Petrik · Aviv Tamar -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2012 Workshop: Human Computation for Science and Computational Sustainability »
Theodoros Damoulas · Thomas Dietterich · Edith Law · Serge Belongie -
2012 Poster: Probabilistic Topic Coding for Superset Label Learning »
Liping Liu · Thomas Dietterich -
2012 Invited Talk: Challenges for Machine Learning in Computational Sustainability »
Thomas Dietterich -
2011 Poster: The Fixed Points of Off-Policy TD »
J. Zico Kolter -
2011 Spotlight: The Fixed Points of Off-Policy TD »
J. Zico Kolter -
2011 Poster: Collective Graphical Models »
Daniel Sheldon · Thomas Dietterich -
2011 Poster: Inverting Grice's Maxims to Learn Rules from Natural Language Extractions »
M. Shahed Sorower · Thomas Dietterich · Janardhan Rao Doppa · Walker Orr · Prasad Tadepalli · Xiaoli Fern -
2010 Poster: Energy Disaggregation via Discriminative Sparse Coding »
J. Zico Kolter · Siddarth Batra · Andrew Y Ng -
2009 Mini Symposium: Machine Learning for Sustainability »
J. Zico Kolter · Thomas Dietterich · Andrew Y Ng -
2007 Spotlight: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion »
J. Zico Kolter · Pieter Abbeel · Andrew Y Ng -
2007 Poster: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion »
J. Zico Kolter · Pieter Abbeel · Andrew Y Ng