Timezone: »
The field of computational biology has seen dramatic growth over the past few years, both in terms of new available data, new scientific questions, and new challenges for learning and inference. In particular, biological data are often relationally structured and highly diverse, well-suited to approaches that combine multiple weak evidence from heterogeneous sources. These data may include sequenced genomes of a variety of organisms, gene expression data from multiple technologies, protein expression data, protein sequence and 3D structural data, protein interactions, gene ontology and pathway databases, genetic variation data (such as SNPs), and an enormous amount of textual data in the biological and medical literature. New types of scientific and clinical problems require the development of novel supervised and unsupervised learning methods that can use these growing resources. Furthermore, next generation sequencing technologies are yielding terabyte scale data sets that require novel algorithmic solutions.
The goal of this workshop is to present emerging problems and machine learning techniques in computational biology. We invited several speakers from the biology/bioinformatics community who will present current research problems in bioinformatics, and we will invite contributed talks on novel learning approaches in computational biology. We encourage contributions describing either progress on new bioinformatics problems or work on established problems using methods that are substantially different from standard approaches. Kernel methods, graphical models, feature selection, and other techniques applied to relevant bioinformatics problems would all be appropriate for the workshop. The targeted audience are people with interest in learning and applications to relevant problems from the life sciences.
Computational biology currently attracts great interest in the NIPS community, but there is still no yearly forum for advances in machine learning for computational biology within existing conferences in the two fields. Over the past few years, we have been working to establish this workshop as a recurring annual meeting in order to provide such a forum. In addition to having continuity among the organizers, we have enlisted a distinguished program committee to ensure that diverse work of the best quality is represented at the workshop. Typically, at least one invited speaker has been a prominent molecular biologist, with the goal of introducing the audience to emerging problems, technologies, and data sources from a biological viewpoint. We have previously organized BMC Bioinformatics special issues with work presented at the workshop, to increase the visibility of learning methods in computational biology. We have also attracted funding from the EU PASCAL2 network to support invited speakers and video recording of the talks for publication on http://videolectures.net.
Author Information
Jean-Philippe Vert (Google)
Gunnar Rätsch (ETH Zürich)
Yanjun Qi (University of Virginia)
Tomer Hertz (Fred Hutchnison Cancer Research Center)
Anna Goldenberg (SickKids/University of Toronto)
Dr Goldenberg is a Senior Scientist in Genetics and Genome Biology program at SickKids Research Institute, recently appointed as the first Varma Family Chair in Biomedical Informatics and Artificial Intelligence. She is also an Associate Professor in the Department of Computer Science at the University of Toronto, faculty member and an Associate Research Director, Health at Vector Institute and a fellow at the Canadian Institute for Advanced Research (CIFAR), Child and Brain Development group. Dr Goldenberg trained in machine learning at Carnegie Mellon University, with a post-doctoral focus in computational biology and medicine. The current focus of her lab is on developing machine learning methods that capture heterogeneity and identify disease mechanisms in complex human diseases as well as developing risk prediction and early warning clinical systems. Dr Goldenberg is a recipient of the Early Researcher Award from the Ministry of Research and Innovation. She is strongly committed to creating responsible AI to benefit patients across a variety of conditions.
Christina Leslie (Memorial Sloan Kettering Cancer Center)
More from the Same Authors
-
2021 : HiRID-ICU-Benchmark --- A Comprehensive Machine Learning Benchmark on High-resolution ICU Data »
Hugo Yèche · Rita Kuznetsova · Marc Zimmermann · Matthias Hüser · Xinrui Lyu · Martin Faltys · Gunnar Rätsch -
2021 : Towards Automatic Actor-Critic Solutions to Continuous Control »
Jake Grigsby · Jin Yong Yoo · Yanjun Qi -
2021 : Learning Single-Cell Perturbation Responses using Neural Optimal Transport »
Charlotte Bunne · Stefan Stark · Gabriele Gut · Andreas Krause · Gunnar Rätsch · Lucas Pelkmans · Kjong Lehmann -
2022 : Feature Restricted Group Dropout for Robust Electronic Health Record Predictions »
Bret Nestor · Anna Goldenberg · Marzyeh Ghassemi -
2022 : Volume-based Performance not Guaranteed by Promising Patch-based Results in Medical Imaging »
Abhishek Moturu · Sayali Joshi · Andrea Doria · Anna Goldenberg -
2022 : Dissecting In-the-Wild Stress from Multimodal Sensor Data »
Sujay Nagaraj · Thomas Hartvigsen · Adrian Boch · Luca Foschini · Marzyeh Ghassemi · Sarah Goodday · Stephen Friend · Anna Goldenberg -
2022 : Continual Learning on Auxiliary tasks via Replayed Experiences: CLARE »
Bohdan Naida · Addison Weatherhead · Sana Tonekaboni · Anna Goldenberg -
2022 : On the Importance of Clinical Notes in Multi-modal Learning for EHR Data »
Severin Husmann · Hugo Yèche · Gunnar Rätsch · Rita Kuznetsova -
2022 Workshop: Learning from Time Series for Health »
Sana Tonekaboni · Thomas Hartvigsen · Satya Narayan Shukla · Gunnar Rätsch · Marzyeh Ghassemi · Anna Goldenberg -
2022 Poster: Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations »
Alexander Immer · Tycho van der Ouderaa · Gunnar Rätsch · Vincent Fortuin · Mark van der Wilk -
2021 Poster: Framing RNN as a kernel method: A neural ODE approach »
Adeline Fermanian · Pierre Marion · Jean-Philippe Vert · Gérard Biau -
2021 Poster: Reverse-Complement Equivariant Networks for DNA Sequences »
Vincent Mallet · Jean-Philippe Vert -
2021 Oral: Framing RNN as a kernel method: A neural ODE approach »
Adeline Fermanian · Pierre Marion · Jean-Philippe Vert · Gérard Biau -
2020 : Christina Leslie »
Christina Leslie -
2020 Poster: What went wrong and when? Instance-wise feature importance for time-series black-box models »
Sana Tonekaboni · Shalmali Joshi · Kieran Campbell · David Duvenaud · Anna Goldenberg -
2019 : Anna Goldenberg Talk »
Anna Goldenberg -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2019 Tutorial: Machine Learning for Computational Biology and Health »
Anna Goldenberg · Barbara Engelhardt -
2018 : Poster Session I »
Aniruddh Raghu · Daniel Jarrett · Kathleen Lewis · Elias Chaibub Neto · Nicholas Mastronarde · Shazia Akbar · Chun-Hung Chao · Henghui Zhu · Seth Stafford · Luna Zhang · Jen-Tang Lu · Changhee Lee · Adityanarayanan Radhakrishnan · Fabian Falck · Liyue Shen · Daniel Neil · Yusuf Roohani · Aparna Balagopalan · Brett Marinelli · Hagai Rossman · Sven Giesselbach · Jose Javier Gonzalez Ortiz · Edward De Brouwer · Byung-Hoon Kim · Rafid Mahmood · Tzu Ming Hsu · Antonio Ribeiro · Rumi Chunara · Agni Orfanoudaki · Kristen Severson · Mingjie Mai · Sonali Parbhoo · Albert Haque · Viraj Prabhu · Di Jin · Alena Harley · Geoffroy Dubourg-Felonneau · Xiaodan Hu · Maithra Raghu · Jonathan Warrell · Nelson Johansen · Wenyuan Li · Marko Järvenpää · Satya Narayan Shukla · Sarah Tan · Vincent Fortuin · Beau Norgeot · Yi-Te Hsu · Joel H Saltz · Veronica Tozzo · Andrew Miller · Guillaume Ausset · Azin Asgarian · Francesco Paolo Casale · Antoine Neuraz · Bhanu Pratap Singh Rawat · Turgay Ayer · Xinyu Li · Mehul Motani · Nathaniel Braman · Laetitia M Shao · Adrian Dalca · Hyunkwang Lee · Emma Pierson · Sandesh Ghimire · Yuji Kawai · Owen Lahav · Anna Goldenberg · Denny Wu · Pavitra Krishnaswamy · Colin Pawlowski · Arijit Ukil · Yuhui Zhang -
2018 Poster: Relating Leverage Scores and Density using Regularized Christoffel Functions »
Edouard Pauwels · Francis Bach · Jean-Philippe Vert -
2018 Poster: Boosting Black Box Variational Inference »
Francesco Locatello · Gideon Dresdner · Rajiv Khanna · Isabel Valera · Gunnar Ratsch -
2018 Spotlight: Boosting Black Box Variational Inference »
Francesco Locatello · Gideon Dresdner · Rajiv Khanna · Isabel Valera · Gunnar Ratsch -
2017 : Poster Spotlights I »
Taesik Na · Yang Song · Aman Sinha · Richard Shin · Qiuyuan Huang · Nina Narodytska · Matt Staib · Kexin Pei · Fnu Suya · Amirata Ghorbani · Jacob Buckman · Matthias Hein · Huan Zhang · Yanjun Qi · Yuan Tian · Min Du · Dimitris Tsipras -
2017 Poster: Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees »
Francesco Locatello · Michael Tschannen · Gunnar Ratsch · Martin Jaggi -
2017 Poster: Attend and Predict: Understanding Gene Regulation by Selective Attention on Chromatin »
Ritambhara Singh · Jack Lanchantin · Arshdeep Sekhon · Yanjun Qi -
2015 Workshop: Machine Learning in Computational Biology »
Nicolo Fusi · Anna Goldenberg · Sara Mostafavi · Gerald Quon · Oliver Stegle -
2015 : Learning from Rankings »
Jean-Philippe Vert -
2014 Workshop: Second Workshop on Transfer and Multi-Task Learning: Theory meets Practice »
Urun Dogan · Tatiana Tommasi · Yoshua Bengio · Francesco Orabona · Marius Kloft · Andres Munoz · Gunnar Rätsch · Hal Daumé III · Mehryar Mohri · Xuezhi Wang · Daniel Hernández-lobato · Song Liu · Thomas Unterthiner · Pascal Germain · Vinay P Namboodiri · Michael Goetz · Christopher Berlind · Sigurd Spieckermann · Marta Soare · Yujia Li · Vitaly Kuznetsov · Wenzhao Lian · Daniele Calandriello · Emilie Morvant -
2014 Workshop: Machine Learning in Computational Biology »
Oliver Stegle · Sara Mostafavi · Anna Goldenberg · Su-In Lee · Michael Leung · Anshul Kundaje · Mark B Gerstein · Martin Renqiang Min · Hannes Bretschneider · Francesco Paolo Casale · Loïc Schwaller · Amit G Deshwar · Benjamin A Logsdon · Yuanyang Zhang · Ali Punjani · Derek C Aguiar · Samuel Kaski -
2014 Workshop: Machine Learning for Clinical Data Analysis, Healthcare and Genomics »
Gunnar Rätsch · Madalina Fiterau · Julia Vogt -
2014 Poster: Tight convex relaxations for sparse matrix factorization »
Emile Richard · Guillaume R Obozinski · Jean-Philippe Vert -
2013 Workshop: Machine Learning in Computational Biology »
Jean-Philippe Vert · Anna Goldenberg · Sara Mostafavi · Oliver Stegle -
2012 Workshop: Machine Learning in Computational Biology »
Jean-Philippe Vert · Anna Goldenberg · Christina Leslie -
2012 Session: Oral Session 9 »
Jean-Philippe Vert -
2012 Session: Oral Session 4 »
Gunnar Rätsch -
2012 Poster: Learning the Dependency Structure of Latent Factors »
Yunlong He · Yanjun Qi · koray kavukcuoglu · Haesun Park -
2011 Poster: Hierarchical Multitask Structured Output Learning for Large-scale Sequence Segmentation »
Nico Goernitz · Christian Widmer · Georg Zeller · Andre Kahles · Soeren Sonnenburg · Gunnar Rätsch -
2010 Workshop: Networks Across Disciplines: Theory and Applications »
Edo M Airoldi · Anna Goldenberg · Jure Leskovec · Quaid Morris -
2010 Workshop: Machine Learning in Computational Biology »
Gunnar Rätsch · Jean-Philippe Vert · Tomer Hertz · Yanjun Qi -
2010 Poster: Fast detection of multiple change-points shared by many signals using group LARS »
Jean-Philippe Vert · Kevin Bleakley -
2009 Workshop: Temporal Segmentation: Perspectives from Statistics, Machine Learning, and Signal Processing »
Stephane Canu · Olivier Cappé · Arthur Gretton · Zaid Harchaoui · Alain Rakotomamonjy · Jean-Philippe Vert -
2009 Workshop: Machine Learning in Computational Biology »
Gal Chechik · Tomer Hertz · William S Noble · Yanjun Qi · Jean-Philippe Vert · Alexander Zien -
2009 Mini Symposium: Machine Learning in Computational Biology »
Yanjun Qi · Jean-Philippe Vert · Gal Chechik · Alexander Zien · Tomer Hertz · William S Noble -
2009 Poster: Polynomial Semantic Indexing »
Bing Bai · Jason E Weston · David Grangier · Ronan Collobert · Kunihiko Sadamasa · Yanjun Qi · Corinna Cortes · Mehryar Mohri -
2009 Poster: White Functionals for Anomaly Detection in Dynamical Systems »
Marco Cuturi · Jean-Philippe Vert · Alexandre d'Aspremont -
2008 Workshop: Machine Learning in Computational Biology »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch -
2008 Mini Symposium: Machine Learning in Computational Biology »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch -
2008 Poster: Clustered Multi-Task Learning: A Convex Formulation »
Laurent Jacob · Francis Bach · Jean-Philippe Vert -
2008 Spotlight: Clustered Multi-Task Learning: A Convex Formulation »
Laurent Jacob · Francis Bach · Jean-Philippe Vert -
2008 Poster: An empirical Analysis of Domain Adaptation Algorithms for Genomic Sequence Analysis »
Gabriele B Schweikert · Christian Widmer · Bernhard Schölkopf · Gunnar Rätsch -
2007 Workshop: Machine Learning in Computational Biology (Part 2) »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch · Koji Tsuda -
2007 Workshop: Machine Learning in Computational Biology (Part 1) »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch · Koji Tsuda -
2007 Spotlight: Boosting Algorithms for Maximizing the Soft Margin »
Manfred K. Warmuth · Karen Glocer · Gunnar Rätsch -
2007 Poster: Boosting Algorithms for Maximizing the Soft Margin »
Manfred K. Warmuth · Karen Glocer · Gunnar Rätsch -
2006 Workshop: New Problems and Methods in Computational Biology »
Gal Chechik · Quaid Morris · Koji Tsuda · Gunnar Rätsch · Christina Leslie · William S Noble -
2006 Poster: Large Scale Hidden Semi-Markov SVMs »
Gunnar Rätsch · Soeren Sonnenburg -
2006 Demonstration: SHOGUN Machine Learning Toolbox »
Soeren Sonnenburg · Gunnar Rätsch