Timezone: »
https://sites.google.com/site/mlini2011/
SUBMISSION DEADLINE: October 17, 2011
Primary contacts:
* Moritz Grosse-Wentrup moritzgw@ieee.org
* Georg Langs langs@csail.mit.edu
* Brian Murphy brian.murphy@unitn.it
* Irina Rish rish@us.ibm.com
MOTIVATION:
Modern multivariate statistical methods have been increasingly applied to various problems in neuroimaging, including “mind reading”, “brain mapping”, clinical diagnosis and prognosis. Multivariate pattern analysis (MVPA) is a promising machine-learning approach for discovering complex relationships between high-dimensional signals (e.g., brain images) and variables of interest (e.g., external stimuli and/or brain's cognitive states). Modern multivariate regularization approaches can overcome the curse of dimensionality and produce highly predictive models even in high-dimensional, small-sample scenarios typical in neuroimaging (e.g., 10 to 100 thousands of voxels and just a few hundreds of samples).
However, despite the rapidly growing number of neuroimaging applications in machine learning, its impact on how theories of brain function are construed has received little consideration. Accordingly, machine-learning techniques are frequently met with skepticism in the domain of cognitive neuroscience. In this workshop, we intend to investigate the implications that follow from adopting machine-learning methods for studying brain function. In particular, this concerns the question how these methods may be used to represent cognitive states, and what ramifications this has for consequent theories of cognition. Besides providing a rationale for the use of machine-learning methods in studying brain function, a further goal of this workshop is to identify shortcomings of state-of-the-art approaches and initiate research efforts that increase the impact of machine learning on cognitive neuroscience.
Decoding higher cognition and interpreting the behaviour of associated classifiers can pose unique challenges, as these psychological states are complex, fast-changing and often ill-defined. For instance, speech is received at 3-4 words a second; acoustic, semantic and syntactic processing occur in parallel; and the form of underlying representations (sentence structures, conceptual descriptions) remains controversial. ML techniques are required that can take advantage of patterns that are temporally and spatially distributed, but coordinated in their activity. And different recording modalities have distinctive advantages: fMRI provides millimetre-level localisation in the brain but poor temporal resolution, while EEG and MEG have millisecond temporal resolution at the cost of spatial resolution. Ideally machine learning methods would be able to meaningfully combine complementary information from these different neuroimaging techniques, and reveal latent dimensions in neural activity, while still being capable of disentangling tightly linked and confounded sub-processes.
Moreover, from the machine learning perspective, neuroimaging is a rich source of challenging problems that can facilitate development of novel approaches. For example, feature extraction and feature selection approaches become particularly important in neuroimaging, since the primary objective is to gain a scientific insight rather than simply learn a ``black-box'' predictor. However, unlike some other applications where the set features might be quite well-explored and established by now, neuroimaging is a domain where a machine-learning researcher cannot simply "ask domain experts what features should be used", since this is essentially the question domain experts themselves are trying to figure out. While the current neuroscientific knowledge can guide the definition of specialized 'brain areas', more complex patterns of brain activity, such as spatio-temporal patterns, functional network patterns, and other multivariate dependencies remain to be discovered mainly via statistical analysis.
Open questions
The list of open questions of interest to the workshop includes, but is not limited to the following:
* How can we interpret results of multivariate models in a neuroscientific context?
* How suitable are MVPA and inference methods for brain mapping?
* How can we assess the specificity and sensitivity?
* What is the role of decoding vs. embedded or separate feature selection?
* How can we use these approaches for a flexible and useful representation of neuroimaging data?
* What can we accomplish with generative vs. discriminative modelling?
* How can ML techniques help us in modeling higher cognitive processes (e.g. reasoning, communication, knowledge representation)?
* How can we disentangle confounded processes and representations?
* How do we combine the data from different recording modalities (e.g. fMRI, EEG, structural MRI, DTI, MEG, NIRS, EcOG, single cell recordings, etc.)?
This workshop is part of the PASCAL2 Thematic Programme on Cognitive Inference and Neuroimaging (http://mlin.kyb.tuebingen.mpg.de/).
Author Information
Melissa K Carroll (Princeton University)
Guillermo Cecchi (IBM Research)
Kai-min K Chang (Carnegie Mellon University)
Moritz Grosse-Wentrup (Max Planck Institute for Intelligent Systems)
James Haxby
Georg Langs (Medical University of Vienna)
Anna Korhonen (University of Cambridge)
Bjoern Menze (ETH Zurich)
Brian Murphy (BrainWaveBank)
Janaina Mourao-Miranda (University College London)
Vittorio Murino (Istituto Italiano di Tecnologia)
Francisco Pereira (National Institute of Mental Health)
Irina Rish (IBM Research AI)
Mert Sabuncu (Mass General Hospital)
Irina Simanova (Max Planck Institute for Psycholinguistics)
Bertrand Thirion (INRIA)
More from the Same Authors
-
2021 : Variable Importance on Medical Images and Socio-Demographic Data »
Ahmad CHAMMA · Denis A. Engemann · Bertrand Thirion -
2022 Poster: VICE: Variational Interpretable Concept Embeddings »
Lukas Muttenthaler · Charles Zheng · Patrick McClure · Robert Vandermeulen · Martin N Hebart · Francisco Pereira -
2022 Poster: A Conditional Randomization Test for Sparse Logistic Regression in High-Dimension »
Binh T. Nguyen · Bertrand Thirion · Sylvain Arlot -
2022 Poster: Aligning individual brains with fused unbalanced Gromov Wasserstein »
Alexis Thual · Quang Huy TRAN · Tatiana Zemskova · Nicolas Courty · Rémi Flamary · Stanislas Dehaene · Bertrand Thirion -
2021 Poster: Shared Independent Component Analysis for Multi-Subject Neuroimaging »
Hugo Richard · Pierre Ablin · Bertrand Thirion · Alexandre Gramfort · Aapo Hyvarinen -
2020 Poster: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Spotlight: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Poster: Statistical control for spatio-temporal MEG/EEG source imaging with desparsified mutli-task Lasso »
Jerome-Alexis Chevalier · Joseph Salmon · Alexandre Gramfort · Bertrand Thirion -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 : Coffee Break & Poster Session »
Samia Mohinta · Andrea Agostinelli · Alexandra Moringen · Jee Hang Lee · Yat Long Lo · Wolfgang Maass · Blue Sheffer · Colin Bredenberg · Benjamin Eysenbach · Liyu Xia · Efstratios Markou · Jan Lichtenberg · Pierre Richemond · Tony Zhang · JB Lanier · Baihan Lin · William Fedus · Glen Berseth · Marta Sarrico · Matthew Crosby · Stephen McAleer · Sina Ghiassian · Franz Scherr · Guillaume Bellec · Darjan Salaj · Arinbjörn Kolbeinsson · Matthew Rosenberg · Jaehoon Shin · Sang Wan Lee · Guillermo Cecchi · Irina Rish · Elias Hajek -
2018 Poster: Distributed Weight Consolidation: A Brain Segmentation Case Study »
Patrick McClure · Charles Zheng · Jakub R Kaczmarzyk · John Rogers-Lee · Satra Ghosh · Dylan Nielson · Peter A Bandettini · Francisco Pereira -
2017 Poster: Learning Neural Representations of Human Cognition across Many fMRI Studies »
Arthur Mensch · Julien Mairal · Danilo Bzdok · Bertrand Thirion · Gael Varoquaux -
2016 : Moritz Grosse-Wentrup (Max Planck Institute Tuebingen) »
Moritz Grosse-Wentrup -
2016 Workshop: Representation Learning in Artificial and Biological Neural Networks »
Leila Wehbe · Marcel Van Gerven · Moritz Grosse-Wentrup · Irina Rish · Brian Murphy · Georg Langs · Guillermo Cecchi · Anwar O Nunez-Elizalde -
2016 Invited Talk: Learning About the Brain: Neuroimaging and Beyond »
Irina Rish -
2016 Poster: Learning brain regions via large-scale online structured sparse dictionary learning »
Elvis DOHMATOB · Arthur Mensch · Gael Varoquaux · Bertrand Thirion -
2015 Workshop: Machine Learning and Interpretation in Neuroimaging (day 1) »
Irina Rish · Leila Wehbe · Brian Murphy · Georg Langs · Guillermo Cecchi · Moritz Grosse-Wentrup -
2015 Poster: A Reduced-Dimension fMRI Shared Response Model »
Cameron Po-Hsuan Chen · Janice Chen · Yaara Yeshurun · Uri Hasson · James Haxby · Peter J. Ramadge -
2015 Oral: A Reduced-Dimension fMRI Shared Response Model »
Cameron Po-Hsuan Chen · Janice Chen · Yaara Yeshurun · Uri Hasson · James Haxby · Peter J. Ramadge -
2015 Poster: Semi-Supervised Factored Logistic Regression for High-Dimensional Neuroimaging Data »
Danilo Bzdok · Michael Eickenberg · Olivier Grisel · Bertrand Thirion · Gael Varoquaux -
2014 Workshop: Riemannian geometry in machine learning, statistics and computer vision »
Minh Ha Quang · Vikas Sindhwani · Vittorio Murino · Michael Betancourt · Tom Fletcher · Richard I Hartley · Anuj Srivastava · Bart Vandereycken -
2014 Workshop: MLINI 2014 - 4th NIPS Workshop on Machine Learning and Interpretation in Neuroimaging: Beyond the Scanner »
Irina Rish · Georg Langs · Brian Murphy · Guillermo Cecchi · Kai-min K Chang · Leila Wehbe -
2014 Poster: Log-Hilbert-Schmidt metric between positive definite operators on Hilbert spaces »
Minh Ha Quang · Marco San Biagio · Vittorio Murino -
2014 Spotlight: Log-Hilbert-Schmidt metric between positive definite operators on Hilbert spaces »
Minh Ha Quang · Marco San Biagio · Vittorio Murino -
2013 Workshop: MLINI-13: Machine Learning and Interpretation in Neuroimaging (Day 2) »
Georg Langs · Brian Murphy · Kai-min K Chang · Paolo Avesani · James Haxby · Nikolaus Kriegeskorte · Susan Whitfield-Gabrieli · Irina Rish · Guillermo Cecchi · Raif Rustamov · Marius Kloft · Jonathan Young · Sina Ghiassian · Michael Coen -
2013 Workshop: MLINI-13: Machine Learning and Interpretation in Neuroimaging (Day 1) »
Georg Langs · Brian Murphy · Kai-min K Chang · Paolo Avesani · James Haxby · Nikolaus Kriegeskorte · Susan Whitfield-Gabrieli · Irina Rish · Guillermo Cecchi · Raif Rustamov · Marius Kloft · Jonathan Young · Sina Ghiassian · Michael Coen -
2013 Poster: Mapping paradigm ontologies to and from the brain »
Yannick Schwartz · Bertrand Thirion · Gael Varoquaux -
2012 Workshop: MLINI - 2nd NIPS Workshop on Machine Learning and Interpretation in Neuroimaging (2 day) »
Georg Langs · Irina Rish · Guillermo Cecchi · Brian Murphy · Bjoern Menze · Kai-min K Chang · Moritz Grosse-Wentrup -
2012 Workshop: MLINI - 2nd NIPS Workshop on Machine Learning and Interpretation in Neuroimaging (2 day) »
Georg Langs · Irina Rish · Guillermo Cecchi · Brian Murphy · Bjoern Menze · Kai-min K Chang · Moritz Grosse-Wentrup -
2012 Poster: A systematic approach to extracting semantic information from functional MRI data »
Francisco Pereira · Matthew Botvinick -
2010 Workshop: Practical Application of Sparse Modeling: Open Issues and New Directions »
Irina Rish · Alexandru Niculescu-Mizil · Guillermo Cecchi · Aurelie Lozano -
2010 Spotlight: Functional Geometry Alignment and Localization of Brain Areas »
Georg Langs · Yanmei Tie · Laura Rigolo · Alexandra Golby · Polina Golland -
2010 Session: Spotlights Session 12 »
Irina Rish -
2010 Session: Oral Session 15 »
Irina Rish -
2010 Poster: Functional Geometry Alignment and Localization of Brain Areas »
Georg Langs · Yanmei Tie · Laura Rigolo · Alexandra Golby · Polina Golland -
2010 Poster: Brain covariance selection: better individual functional connectivity models using population prior »
Gaël Varoquaux · Alexandre Gramfort · Jean-Baptiste Poline · Bertrand Thirion -
2010 Poster: Structural epitome: a way to summarize one’s visual experience »
Nebojsa Jojic · Alessandro Perina · Vittorio Murino -
2009 Workshop: Connectivity Inference in Neuroimaging »
Karl Friston · Moritz Grosse-Wentrup · Uta Noppeney · Bernhard Schölkopf -
2009 Poster: Bayesian Belief Polarization »
Alan Jern · Kai-min K Chang · Charles Kemp -
2009 Poster: Discriminative Network Models of Schizophrenia »
Guillermo Cecchi · Irina Rish · Benjamin Thyreau · Bertrand Thirion · Marion Plaze · Jean-Luc Martinot · Marie Laure Paillere-Martinot · Jean-Baptiste Poline -
2009 Oral: Discriminative Network Models of Schizophrenia »
Guillermo Cecchi · Irina Rish · Benjamin Thyreau · Bertrand Thirion · Marion Plaze · Jean-Luc Martinot · Marie Laure Paillere-Martinot · Jean-Baptiste Poline -
2009 Poster: fMRI-Based Inter-Subject Cortical Alignment Using Functional Connectivity »
Bryan Conroy · Ben Singer · James Haxby · Peter J. Ramadge -
2009 Poster: Free energy score space »
Alessandro Perina · Marco Cristani · Umberto Castellani · Vittorio Murino · Nebojsa Jojic -
2008 Workshop: New Directions in Statistical Learning for Meaningful and Reproducible fMRI Analysis »
Melissa K Carroll · Irina Rish · Francisco Pereira · Guillermo Cecchi -
2008 Poster: Understanding Brain Connectivity Patterns during Motor Imagery for Brain-Computer Interfacing »
Moritz Grosse-Wentrup -
2006 Workshop: Novel Applications of Dimensionality Reduction »
John Blitzer · Rajarshi Das · Irina Rish · Kilian Q Weinberger -
2006 Workshop: New directions on decoding mental states from fMRI data »
John-Dylan Haynes · Tom Mitchell · Francisco Pereira -
2006 Poster: Adaptive Spatial Filters with predefined Region of Interest for EEG based Brain-Computer-Interfaces »
Moritz Grosse-Wentrup · Klaus Gramann · Martin Buss -
2006 Poster: Clustering Under Prior Knowledge with Application to Image Segmentation »
Mario T Figueiredo · Dong Seon Cheng · Vittorio Murino