Timezone: »
In recent years, there has been a lot of interest in algorithms that learn feature hierarchies from unlabeled data. Deep learning methods such as deep belief networks, sparse coding-based methods, convolutional networks, and deep Boltzmann machines, have shown promise and have already been successfully applied to a variety of tasks in computer vision, audio processing, natural language processing, information retrieval, and robotics. In this workshop, we will bring together researchers who are interested in deep learning and unsupervised feature learning, review the recent technical progress, discuss the challenges, and identify promising future research directions.
Through invited talks, panels and discussions (see program schedule), we will attempt to address some of the more controversial topics in deep learning today, such as whether hierarchical systems are more powerful, the issues of scalability of deep learning, and what principles should guide the design of objective functions used to train these models.
The workshop will also invite paper submissions on the development of unsupervised feature learning and deep learning algorithms, theoretical foundations, inference and optimization, semi-supervised and transfer learning, and applications of deep learning and unsupervised feature learning to real-world tasks. Papers will be presented as oral or poster presentations (with a short spotlight presentation).
The workshop will also have two panel discussion sessions. The main topics of discussion will include:
* Whether/why hierarchical systems are really needed
* How to build hierarchical systems: advantages and disadvantages of bottom-up vs. top-down paradigm.
* Principles underlying learning of hierarchical systems: sparsity, reconstruction, (if supervised) what kind of supervision, how to learn invariances, etc.
* Issues of scalability of unsupervised feature learning and deep learning systems
* Major milestones and goals for the next 5 or 10 years
* Critiques of deep learning
* Real-world applications: what are challenging tasks and datasets?
* Relation to neuroscience: Can or should we design models that are more closely inspired by biological systems? Can we explain neural coding?
Panel discussions will be led by the members of the organizing committee as well as by prominent researchers from related fields.
The goal of this workshop is two-fold. First, we want to identify the next big challenges and propose research directions for the deep learning community. Second, we want to bridge the gap between researchers working on different (but related) fields, to leverage their expertise, and to encourage the exchange of ideas with all the other members of the NIPS community.
The proposed workshop builds on and extends the very successful Deep Learning and Unsupervised Feature Learning workshop held at NIPS 2010, which had over 150 attendees and received 30 research paper submissions.
The tentative timeline is (might be revised depending on the timing of notification of workshop acceptance):
August 30: Call for papers released
October 21: Paper submissions due
October 21 - November 7: Reviewing period
November 11: Notification of acceptance or rejection
December 1: Final version of papers due (for online proceedings)
December 16 or 17: Workshop*
* If possible, we'd prefer a Friday workshop date, which would allow us to organize a dinner for the attendees; but either day is fine.
Author Information
Yoshua Bengio (University of Montreal)
Yoshua Bengio (PhD'1991 in Computer Science, McGill University). After two post-doctoral years, one at MIT with Michael Jordan and one at AT&T Bell Laboratories with Yann LeCun, he became professor at the department of computer science and operations research at Université de Montréal. Author of two books (a third is in preparation) and more than 200 publications, he is among the most cited Canadian computer scientists and is or has been associate editor of the top journals in machine learning and neural networks. Since '2000 he holds a Canada Research Chair in Statistical Learning Algorithms, since '2006 an NSERC Chair, since '2005 his is a Senior Fellow of the Canadian Institute for Advanced Research and since 2014 he co-directs its program focused on deep learning. He is on the board of the NIPS foundation and has been program chair and general chair for NIPS. He has co-organized the Learning Workshop for 14 years and co-created the International Conference on Learning Representations. His interests are centered around a quest for AI through machine learning, and include fundamental questions on deep learning, representation learning, the geometry of generalization in high-dimensional spaces, manifold learning and biologically inspired learning algorithms.
Adam Coates (Baidu Research)
Yann LeCun (Facebook AI Research and New York University)
Yann LeCun is VP & Chief AI Scientist at Meta and Silver Professor at NYU affiliated with the Courant Institute of Mathematical Sciences & the Center for Data Science. He was the founding Director of FAIR (Meta's AI Research group) and of the NYU Center for Data Science. He received an Engineering Diploma from ESIEE (Paris) and a PhD from Sorbonne Université. After a postdoc in Toronto he joined AT&T Bell Labs in 1988, and AT&T Labs in 1996 as Head of Image Processing Research. He joined NYU as a professor in 2003 and Facebook in 2013. His interests include AI machine learning, computer perception, robotics and computational neuroscience. He is the recipient of the 2018 ACM Turing Award (with Geoffrey Hinton and Yoshua Bengio) for "conceptual and engineering breakthroughs that have made deep neural networks a critical component of computing", a member of the National Academy of Sciences, the National Academy of Engineering and a Chevalier de la Légion d’Honneur.
Nicolas Le Roux (Google Brain)
Andrew Y Ng (Baidu Research)
More from the Same Authors
-
2021 Spotlight: Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization »
Kartik Ahuja · Ethan Caballero · Dinghuai Zhang · Jean-Christophe Gagnon-Audet · Yoshua Bengio · Ioannis Mitliagkas · Irina Rish -
2021 : Systematic Evaluation of Causal Discovery in Visual Model Based Reinforcement Learning »
Nan Rosemary Ke · Aniket Didolkar · Sarthak Mittal · Anirudh Goyal · Guillaume Lajoie · Stefan Bauer · Danilo Jimenez Rezende · Yoshua Bengio · Chris Pal · Michael Mozer -
2021 : Deep generative models create new and diverse protein structures »
Zeming Lin · Tom Sercu · yann lecun · Alex Rives -
2021 : Long-Term Credit Assignment via Model-based Temporal Shortcuts »
Michel Ma · Pierluca D'Oro · Yoshua Bengio · Pierre-Luc Bacon -
2021 : A Consciousness-Inspired Planning Agent for Model-Based Reinforcement Learning »
Mingde Zhao · Zhen Liu · Sitao Luan · Shuyuan Zhang · Doina Precup · Yoshua Bengio -
2021 : Effect of diversity in Meta-Learning »
Ramnath Kumar · Tristan Deleu · Yoshua Bengio -
2022 : Poly-S: Analyzing and Improving Polytropon for Data-Efficient Multi-Task Learning »
Lucas Page-Caccia · Edoardo Maria Ponti · Liyuan Liu · Matheus Pereira · Nicolas Le Roux · Alessandro Sordoni -
2022 : Target-based Surrogates for Stochastic Optimization »
Jonathan Lavington · Sharan Vaswani · Reza Babanezhad Harikandeh · Mark Schmidt · Nicolas Le Roux -
2022 Poster: The Effects of Regularization and Data Augmentation are Class Dependent »
Randall Balestriero · Leon Bottou · Yann LeCun -
2022 Poster: VICRegL: Self-Supervised Learning of Local Visual Features »
Adrien Bardes · Jean Ponce · Yann LeCun -
2022 Poster: Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone »
Zi-Yi Dou · Aishwarya Kamath · Zhe Gan · Pengchuan Zhang · Jianfeng Wang · Linjie Li · Zicheng Liu · Ce Liu · Yann LeCun · Nanyun Peng · Jianfeng Gao · Lijuan Wang -
2022 Poster: Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors »
Ravid Shwartz-Ziv · Micah Goldblum · Hossein Souri · Sanyam Kapoor · Chen Zhu · Yann LeCun · Andrew Wilson -
2022 Poster: A Data-Augmentation Is Worth A Thousand Samples: Analytical Moments And Sampling-Free Training »
Randall Balestriero · Ishan Misra · Yann LeCun -
2022 Poster: projUNN: efficient method for training deep networks with unitary matrices »
Bobak Kiani · Randall Balestriero · Yann LeCun · Seth Lloyd -
2022 Poster: Contrastive and Non-Contrastive Self-Supervised Learning Recover Global and Local Spectral Embedding Methods »
Randall Balestriero · Yann LeCun -
2021 : Deep generative models create new and diverse protein structures »
Zeming Lin · Tom Sercu · yann lecun · Alex Rives -
2021 Poster: Dynamic Inference with Neural Interpreters »
Nasim Rahaman · Muhammad Waleed Gondal · Shruti Joshi · Peter Gehler · Yoshua Bengio · Francesco Locatello · Bernhard Schölkopf -
2021 Poster: Gradient Starvation: A Learning Proclivity in Neural Networks »
Mohammad Pezeshki · Oumar Kaba · Yoshua Bengio · Aaron Courville · Doina Precup · Guillaume Lajoie -
2021 Poster: A Consciousness-Inspired Planning Agent for Model-Based Reinforcement Learning »
Mingde Zhao · Zhen Liu · Sitao Luan · Shuyuan Zhang · Doina Precup · Yoshua Bengio -
2021 Poster: Neural Production Systems »
Anirudh Goyal · Aniket Didolkar · Nan Rosemary Ke · Charles Blundell · Philippe Beaudoin · Nicolas Heess · Michael Mozer · Yoshua Bengio -
2021 Poster: Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation »
Emmanuel Bengio · Moksh Jain · Maksym Korablyov · Doina Precup · Yoshua Bengio -
2021 Poster: The Causal-Neural Connection: Expressiveness, Learnability, and Inference »
Kevin Xia · Kai-Zhan Lee · Yoshua Bengio · Elias Bareinboim -
2021 Poster: Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization »
Kartik Ahuja · Ethan Caballero · Dinghuai Zhang · Jean-Christophe Gagnon-Audet · Yoshua Bengio · Ioannis Mitliagkas · Irina Rish -
2021 Poster: Discrete-Valued Neural Communication »
Dianbo Liu · Alex Lamb · Kenji Kawaguchi · Anirudh Goyal · Chen Sun · Michael Mozer · Yoshua Bengio -
2020 : Panel Discussion & Closing »
Yejin Choi · Alexei Efros · Chelsea Finn · Kristen Grauman · Quoc V Le · Yann LeCun · Ruslan Salakhutdinov · Eric Xing -
2020 : QA: Yann LeCun »
Yann LeCun -
2020 : Invited Talk: Yann LeCun »
Yann LeCun -
2020 Tutorial: (Track3) Policy Optimization in Reinforcement Learning Q&A »
Sham M Kakade · Martha White · Nicolas Le Roux -
2020 Poster: Implicit Rank-Minimizing Autoencoder »
Li Jing · Jure Zbontar · yann lecun -
2020 Poster: An operator view of policy gradient methods »
Dibya Ghosh · Marlos C. Machado · Nicolas Le Roux -
2019 : TBD »
Yann LeCun -
2019 Poster: A Geometric Perspective on Optimal Representations for Reinforcement Learning »
Marc Bellemare · Will Dabney · Robert Dadashi · Adrien Ali Taiga · Pablo Samuel Castro · Nicolas Le Roux · Dale Schuurmans · Tor Lattimore · Clare Lyle -
2019 Poster: Reducing the variance in online optimization by transporting past gradients »
Sébastien Arnold · Pierre-Antoine Manzagol · Reza Babanezhad Harikandeh · Ioannis Mitliagkas · Nicolas Le Roux -
2019 Spotlight: Reducing the variance in online optimization by transporting past gradients »
Sébastien Arnold · Pierre-Antoine Manzagol · Reza Babanezhad Harikandeh · Ioannis Mitliagkas · Nicolas Le Roux -
2018 : Poster Session 1 (note there are numerous missing names here, all papers appear in all poster sessions) »
Akhilesh Gotmare · Kenneth Holstein · Jan Brabec · Michal Uricar · Kaleigh Clary · Cynthia Rudin · Sam Witty · Andrew Ross · Shayne O'Brien · Babak Esmaeili · Jessica Forde · Massimo Caccia · Ali Emami · Scott Jordan · Bronwyn Woods · D. Sculley · Rebekah Overdorf · Nicolas Le Roux · Peter Henderson · Brandon Yang · Tzu-Yu Liu · David Jensen · Niccolo Dalmasso · Weitang Liu · Paul Marc TRICHELAIR · Jun Ki Lee · Akanksha Atrey · Matt Groh · Yotam Hechtlinger · Emma Tosch -
2018 Poster: GLoMo: Unsupervised Learning of Transferable Relational Graphs »
Zhilin Yang · Jake Zhao · Bhuwan Dhingra · Kaiming He · William Cohen · Russ Salakhutdinov · Yann LeCun -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 : From deep learning of disentangled representations to higher-level cognition »
Yoshua Bengio -
2017 Tutorial: Geometric Deep Learning on Graphs and Manifolds »
Michael Bronstein · Joan Bruna · arthur szlam · Xavier Bresson · Yann LeCun -
2016 : Discussion panel »
Ian Goodfellow · Soumith Chintala · Arthur Gretton · Sebastian Nowozin · Aaron Courville · Yann LeCun · Emily Denton -
2016 : Energy-Based Adversarial Training and Video Prediction »
Yann LeCun -
2016 Symposium: Deep Learning Symposium »
Yoshua Bengio · Yann LeCun · Navdeep Jaitly · Roger Grosse -
2016 Poster: Disentangling factors of variation in deep representation using adversarial training »
Michael Mathieu · Junbo Jake Zhao · Junbo (Jake) Zhao · Aditya Ramesh · Pablo Sprechmann · Yann LeCun -
2016 Invited Talk: Predictive Learning »
Yann LeCun -
2015 : Large-Scale Optimization for Deep Learning »
Yann LeCun -
2015 Symposium: Deep Learning Symposium »
Yoshua Bengio · Marc'Aurelio Ranzato · Honglak Lee · Max Welling · Andrew Y Ng -
2015 Poster: Learning to Linearize Under Uncertainty »
Ross Goroshin · Michael Mathieu · Yann LeCun -
2015 Poster: Character-level Convolutional Networks for Text Classification »
Xiang Zhang · Junbo (Jake) Zhao · Yann LeCun -
2015 Poster: Deep learning with Elastic Averaging SGD »
Sixin Zhang · Anna Choromanska · Yann LeCun -
2015 Spotlight: Deep learning with Elastic Averaging SGD »
Sixin Zhang · Anna Choromanska · Yann LeCun -
2015 Tutorial: Deep Learning »
Geoffrey E Hinton · Yoshua Bengio · Yann LeCun -
2014 Workshop: Second Workshop on Transfer and Multi-Task Learning: Theory meets Practice »
Urun Dogan · Tatiana Tommasi · Yoshua Bengio · Francesco Orabona · Marius Kloft · Andres Munoz · Gunnar Rätsch · Hal Daumé III · Mehryar Mohri · Xuezhi Wang · Daniel Hernández-lobato · Song Liu · Thomas Unterthiner · Pascal Germain · Vinay P Namboodiri · Michael Goetz · Christopher Berlind · Sigurd Spieckermann · Marta Soare · Yujia Li · Vitaly Kuznetsov · Wenzhao Lian · Daniele Calandriello · Emilie Morvant -
2014 Workshop: Deep Learning and Representation Learning »
Andrew Y Ng · Yoshua Bengio · Adam Coates · Roland Memisevic · Sharanyan Chetlur · Geoffrey E Hinton · Shamim Nemati · Bryan Catanzaro · Surya Ganguli · Herbert Jaeger · Phil Blunsom · Leon Bottou · Volodymyr Mnih · Chen-Yu Lee · Rich M Schwartz -
2014 Workshop: OPT2014: Optimization for Machine Learning »
Zaid Harchaoui · Suvrit Sra · Alekh Agarwal · Martin Jaggi · Miro Dudik · Aaditya Ramdas · Jean Lasserre · Yoshua Bengio · Amir Beck -
2014 Poster: Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation »
Emily Denton · Wojciech Zaremba · Joan Bruna · Yann LeCun · Rob Fergus -
2014 Poster: Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation »
Jonathan J Tompson · Arjun Jain · Yann LeCun · Christoph Bregler -
2014 Poster: How transferable are features in deep neural networks? »
Jason Yosinski · Jeff Clune · Yoshua Bengio · Hod Lipson -
2014 Poster: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization »
Yann N Dauphin · Razvan Pascanu · Caglar Gulcehre · Kyunghyun Cho · Surya Ganguli · Yoshua Bengio -
2014 Poster: Generative Adversarial Nets »
Ian Goodfellow · Jean Pouget-Abadie · Mehdi Mirza · Bing Xu · David Warde-Farley · Sherjil Ozair · Aaron Courville · Yoshua Bengio -
2014 Poster: On the Number of Linear Regions of Deep Neural Networks »
Guido F Montufar · Razvan Pascanu · Kyunghyun Cho · Yoshua Bengio -
2014 Demonstration: Neural Machine Translation »
Bart van Merriënboer · Kyunghyun Cho · Dzmitry Bahdanau · Yoshua Bengio -
2014 Oral: How transferable are features in deep neural networks? »
Jason Yosinski · Jeff Clune · Yoshua Bengio · Hod Lipson -
2014 Poster: Iterative Neural Autoregressive Distribution Estimator NADE-k »
Tapani Raiko · Yao Li · Kyunghyun Cho · Yoshua Bengio -
2013 Workshop: Neural Information Processing Scaled for Bioacoustics : NIPS4B »
Hervé GLOTIN · Yann LeCun · Thierry Artières · Stephane Mallat · Ofer Tchernichovski · Xanadu Halkias -
2013 Workshop: Deep Learning »
Yoshua Bengio · Hugo Larochelle · Russ Salakhutdinov · Tomas Mikolov · Matthew D Zeiler · David Mcallester · Nando de Freitas · Josh Tenenbaum · Jian Zhou · Volodymyr Mnih -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2013 Demonstration: Easy Text Classification with Machine Learning »
Richard Socher · Romain Paulus · Bryan McCann · Andrew Y Ng -
2013 Poster: Multi-Prediction Deep Boltzmann Machines »
Ian Goodfellow · Mehdi Mirza · Aaron Courville · Yoshua Bengio -
2013 Poster: Generalized Denoising Auto-Encoders as Generative Models »
Yoshua Bengio · Li Yao · Guillaume Alain · Pascal Vincent -
2013 Poster: Reasoning With Neural Tensor Networks for Knowledge Base Completion »
Richard Socher · Danqi Chen · Christopher D Manning · Andrew Y Ng -
2013 Poster: Zero-Shot Learning Through Cross-Modal Transfer »
Richard Socher · Milind Ganjoo · Christopher D Manning · Andrew Y Ng -
2013 Poster: Stochastic Ratio Matching of RBMs for Sparse High-Dimensional Inputs »
Yann Dauphin · Yoshua Bengio -
2012 Workshop: Deep Learning and Unsupervised Feature Learning »
Yoshua Bengio · James Bergstra · Quoc V. Le -
2012 Poster: Recursive Deep Learning on 3D Point Clouds »
Richard Socher · Bharath Bath · Brody Huval · Christopher D Manning · Andrew Y Ng -
2012 Poster: Deep Learning of invariant features via tracked video sequences »
Will Y Zou · Andrew Y Ng · Shenghuo Zhu · Kai Yu -
2012 Poster: Large Scale Distributed Deep Networks »
Jeff Dean · Greg Corrado · Rajat Monga · Kai Chen · Matthieu Devin · Quoc V Le · Mark Mao · Marc'Aurelio Ranzato · Andrew Senior · Paul Tucker · Ke Yang · Andrew Y Ng -
2012 Poster: A latent factor model for highly multi-relational data »
Rodolphe Jenatton · Nicolas Le Roux · Antoine Bordes · Guillaume R Obozinski -
2012 Poster: Emergence of Object-Selective Features in Unsupervised Feature Learning »
Adam Coates · Andrej Karpathy · Andrew Y Ng -
2012 Poster: A Stochastic Gradient Method with an Exponential Convergence
Rate for Finite Training Sets »
Nicolas Le Roux · Mark Schmidt · Francis Bach -
2012 Oral: A Stochastic Gradient Method with an Exponential Convergence
Rate for Finite Training Sets »
Nicolas Le Roux · Mark Schmidt · Francis Bach -
2011 Workshop: Challenges in Learning Hierarchical Models: Transfer Learning and Optimization »
Quoc V. Le · Marc'Aurelio Ranzato · Russ Salakhutdinov · Josh Tenenbaum · Andrew Y Ng -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2011 Oral: The Manifold Tangent Classifier »
Salah Rifai · Yann N Dauphin · Pascal Vincent · Yoshua Bengio · Xavier Muller -
2011 Poster: Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization »
Mark Schmidt · Nicolas Le Roux · Francis Bach -
2011 Poster: ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning »
Quoc V. Le · Alexandre Karpenko · Jiquan Ngiam · Andrew Y Ng -
2011 Poster: Unfolding Recursive Autoencoders for Paraphrase Detection »
Richard Socher · Eric H Huang · Jeffrey Pennin · Andrew Y Ng · Christopher D Manning -
2011 Poster: Shallow vs. Deep Sum-Product Networks »
Olivier Delalleau · Yoshua Bengio -
2011 Poster: Sparse Filtering »
Jiquan Ngiam · Pang Wei Koh · Zhenghao Chen · Sonia A Bhaskar · Andrew Y Ng -
2011 Poster: Structured sparse coding via lateral inhibition »
arthur d szlam · Karol Gregor · Yann LeCun -
2011 Poster: The Manifold Tangent Classifier »
Salah Rifai · Yann N Dauphin · Pascal Vincent · Yoshua Bengio · Xavier Muller -
2011 Spotlight: Sparse Filtering »
Jiquan Ngiam · Pang Wei Koh · Zhenghao Chen · Sonia A Bhaskar · Andrew Y Ng -
2011 Oral: Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization »
Mark Schmidt · Nicolas Le Roux · Francis Bach -
2011 Demonstration: Haptic Belt with Pedestrian Detection »
Jean Feng · Marc Rasi · Andrew Y Ng · Quoc V. Le · Morgan Quigley · Justin K Chen · Tiffany Low · Will Y Zou -
2011 Poster: Algorithms for Hyper-Parameter Optimization »
James Bergstra · Rémi Bardenet · Yoshua Bengio · Balázs Kégl -
2011 Poster: On Tracking The Partition Function »
Guillaume Desjardins · Aaron Courville · Yoshua Bengio -
2011 Poster: Selecting Receptive Fields in Deep Networks »
Adam Coates · Andrew Y Ng -
2011 Poster: Unsupervised learning models of primary cortical receptive fields and receptive field plasticity »
Andrew M Saxe · Maneesh Bhand · Ritvik Mudur · Bipin Suresh · Andrew Y Ng -
2010 Workshop: Deep Learning and Unsupervised Feature Learning »
Honglak Lee · Marc'Aurelio Ranzato · Yoshua Bengio · Geoffrey E Hinton · Yann LeCun · Andrew Y Ng -
2010 Demonstration: NeuFlow: a dataflow processor for convolutional nets and other real-time algorithms »
Yann LeCun -
2010 Spotlight: Learning Convolutional Feature Hierarchies for Visual Recognition »
koray kavukcuoglu · Pierre Sermanet · Y-Lan Boureau · Karol Gregor · Michael Mathieu · Yann LeCun -
2010 Poster: Tiled convolutional neural networks »
Quoc V. Le · Jiquan Ngiam · Zhenghao Chen · Daniel Jin hao Chia · Pang Wei Koh · Andrew Y Ng -
2010 Poster: Learning Convolutional Feature Hierarchies for Visual Recognition »
koray kavukcuoglu · Pierre Sermanet · Y-Lan Boureau · Karol Gregor · Michael Mathieu · Yann LeCun -
2010 Poster: Energy Disaggregation via Discriminative Sparse Coding »
J. Zico Kolter · Siddarth Batra · Andrew Y Ng -
2010 Poster: Regularized estimation of image statistics by Score Matching »
Diederik Kingma · Yann LeCun -
2009 Mini Symposium: Machine Learning for Sustainability »
J. Zico Kolter · Thomas Dietterich · Andrew Y Ng -
2009 Poster: Slow, Decorrelated Features for Pretraining Complex Cell-like Networks »
James Bergstra · Yoshua Bengio -
2009 Poster: An Infinite Factor Model Hierarchy Via a Noisy-Or Mechanism »
Aaron Courville · Douglas Eck · Yoshua Bengio -
2009 Poster: Measuring Invariances in Deep Networks »
Ian Goodfellow · Quoc V. Le · Andrew M Saxe · Andrew Y Ng -
2009 Poster: Unsupervised feature learning for audio classification using convolutional deep belief networks »
Honglak Lee · Peter Pham · Yan Largman · Andrew Y Ng -
2009 Session: Debate on Future Publication Models for the NIPS Community »
Yoshua Bengio -
2008 Demonstration: High-Accuracy 3D Sensing for Mobile Manipulators »
Stephen Gould · Morgan Quigley · Siddarth Batra · Ellen Klingbiel · Quoc V Le · Andrew Y Ng -
2007 Poster: Augmented Functional Time Series Representation and Forecasting with Gaussian Processes »
Nicolas Chapados · Yoshua Bengio -
2007 Poster: Learning the 2-D Topology of Images »
Nicolas Le Roux · Yoshua Bengio · Pascal Lamblin · Marc Joliveau · Balázs Kégl -
2007 Poster: Sparse deep belief net model for visual area V2 »
Honglak Lee · Ekanadham Chaitanya · Andrew Y Ng -
2007 Spotlight: Augmented Functional Time Series Representation and Forecasting with Gaussian Processes »
Nicolas Chapados · Yoshua Bengio -
2007 Demonstration: Holistic Scene Understanding from Visual and Range Data »
Stephen Gould · Morgan Quigley · Andrew Y Ng · Daphne Koller -
2007 Spotlight: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion »
J. Zico Kolter · Pieter Abbeel · Andrew Y Ng -
2007 Poster: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion »
J. Zico Kolter · Pieter Abbeel · Andrew Y Ng -
2007 Demonstration: Building a 3-D Model From a Single Still Image »
Ashutosh Saxena · min sun · Andrew Y Ng -
2007 Poster: Topmoumoute Online Natural Gradient Algorithm »
Nicolas Le Roux · Pierre-Antoine Manzagol · Yoshua Bengio -
2007 Poster: Efficient multiple hyperparameter learning for log-linear models »
Chuong B Do · Chuan-Sheng Foo · Andrew Y Ng -
2007 Poster: Sparse Feature Learning for Deep Belief Networks »
Marc'Aurelio Ranzato · Y-Lan Boureau · Yann LeCun -
2006 Poster: Efficient Learning of Sparse Representations with an Energy-Based Model »
Marc'Aurelio Ranzato · Christopher Poultney · Sumit Chopra · Yann LeCun -
2006 Demonstration: Peripheral-Foveal Vision for Real-time Object Recognition »
Benjamin Sapp · Stephen Gould · Adrian Kaehler · Gary R Bradski · Andrew Y Ng -
2006 Spotlight: Efficient Learning of Sparse Representations with an Energy-Based Model »
Marc'Aurelio Ranzato · Christopher Poultney · Sumit Chopra · Yann LeCun -
2006 Poster: Robotic Grasping of Novel Objects »
Ashutosh Saxena · Justin Driemeyer · Justin Kearns · Andrew Y Ng -
2006 Poster: Map-Reduce for Machine Learning on Multicore »
Cheng-Tao Chu · Sang Kyun Kim · Yi-An Lin · YuanYuan Yu · Gary R Bradski · Andrew Y Ng · Kunle Olukotun -
2006 Poster: Greedy Layer-Wise Training of Deep Networks »
Yoshua Bengio · Pascal Lamblin · Dan Popovici · Hugo Larochelle -
2006 Poster: An Application of Reinforcement Learning to Aerobatic Helicopter Flight »
Pieter Abbeel · Adam P Coates · Andrew Y Ng · Morgan Quigley -
2006 Talk: Greedy Layer-Wise Training of Deep Networks »
Yoshua Bengio · Pascal Lamblin · Dan Popovici · Hugo Larochelle -
2006 Talk: Map-Reduce for Machine Learning on Multicore »
Cheng-Tao Chu · Sang Kyun Kim · Yi-An Lin · YuanYuan Yu · Gary R Bradski · Andrew Y Ng · Kunle Olukotun -
2006 Spotlight: Robotic Grasping of Novel Objects »
Ashutosh Saxena · Justin Driemeyer · Justin Kearns · Andrew Y Ng -
2006 Talk: An Application of Reinforcement Learning to Aerobatic Helicopter Flight »
Pieter Abbeel · Adam P Coates · Andrew Y Ng · Morgan Quigley -
2006 Poster: Efficient sparse coding algorithms, end-stopping and nCRF surround suppression »
Honglak Lee · Alexis Battle · Raina Rajat · Andrew Y Ng -
2006 Tutorial: Energy-Based Models: Structured Learning Beyond Likelihoods »
Yann LeCun