Timezone: »
Model order selection, which is a trade-off between model complexity and its empirical data fit, is one of the fundamental questions in machine learning. It was studied in detail in the context of supervised learning with i.i.d. samples, but received relatively little attention beyond this domain. The goal of our workshop is to raise attention to the question of model order selection in other domains, share ideas and approaches between the domains, and identify perspective directions for future research. Our interest covers ways of defining model complexity in different domains, examples of practical problems, where intelligent model order selection yields advantage over simplistic approaches, and new theoretical tools for analysis of model order selection. The domains of interest span over all problems that cannot be directly mapped to supervised learning with i.i.d. samples, including, but not limited to, reinforcement learning, active learning, learning with delayed, partial, or indirect feedback, and learning with submodular functions.
An example of first steps in defining complexity of models in reinforcement learning, applying trade-off between model complexity and empirical performance, and analyzing it can be found in [1-4]. An intriguing research direction coming out of these works is simultaneous analysis of exploration-exploitation and model order selection trade-offs. Such an analysis enables to design and analyze models that adapt their complexity as they continue to explore and observe new data. Potential practical applications of such models include contextual bandits (for example, in personalization of recommendations on the web [5]) and Markov decision processes.
References:
[1] N. Tishby, D. Polani. "Information Theory of Decisions and Actions", Perception-Reason-Action Cycle: Models, Algorithms and Systems, 2010.
[2] J. Asmuth, L. Li, M. L. Littman, A. Nouri, D. Wingate, "A Bayesian Sampling Approach to Exploration in Reinforcement Learning", UAI, 2009.
[3] N. Srinivas, A. Krause, S. M. Kakade, M. Seeger, "Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design", ICML, 2010.
[4] Y. Seldin, N. Cesa-Bianchi, F. Laviolette, P. Auer, J. Shawe-Taylor, J. Peters, "PAC-Bayesian Analysis of the Exploration-Exploitation Trade-off", ICML-2011 workshop on online trading of exploration and exploitation.
[5] A. Beygelzimer, J. Langford, L. Li, L. Reyzin, R. Schapire, "Contextual Bandit Algorithms with Supervised Learning Guarantees", AISTATS, 2011.
Author Information
Yevgeny Seldin (University of Copenhagen)
Yacov Crammer (Technion)
Nicolò Cesa-Bianchi (Università degli Studi di Milano, Italy)
Francois Laviolette (Université Laval)
John Shawe-Taylor (UCL)
John Shawe-Taylor has contributed to fields ranging from graph theory through cryptography to statistical learning theory and its applications. However, his main contributions have been in the development of the analysis and subsequent algorithmic definition of principled machine learning algorithms founded in statistical learning theory. This work has helped to drive a fundamental rebirth in the field of machine learning with the introduction of kernel methods and support vector machines, driving the mapping of these approaches onto novel domains including work in computer vision, document classification, and applications in biology and medicine focussed on brain scan, immunity and proteome analysis. He has published over 300 papers and two books that have together attracted over 60000 citations. He has also been instrumental in assembling a series of influential European Networks of Excellence. The scientific coordination of these projects has influenced a generation of researchers and promoted the widespread uptake of machine learning in both science and industry that we are currently witnessing.
More from the Same Authors
-
2021 : Progress in Self-Certified Neural Networks »
Maria Perez-Ortiz · Omar Rivasplata · Emilio Parrado-Hernández · Benjamin Guedj · John Shawe-Taylor -
2022 Poster: Finite Sample Analysis Of Dynamic Regression Parameter Learning »
Mark Kozdoba · Edward Moroshko · Shie Mannor · Yacov Crammer -
2020 Poster: PAC-Bayes Analysis Beyond the Usual Bounds »
Omar Rivasplata · Ilja Kuzborskij · Csaba Szepesvari · John Shawe-Taylor -
2020 Session: Orals & Spotlights Track 11: Learning Theory »
Dylan Foster · Nicolò Cesa-Bianchi -
2019 Poster: Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks »
Gaël Letarte · Pascal Germain · Benjamin Guedj · Francois Laviolette -
2018 Poster: Adaptation to Easy Data in Prediction with Limited Advice »
Tobias Sommer Thune · Yevgeny Seldin -
2018 Poster: Factored Bandits »
Julian Zimmert · Yevgeny Seldin -
2018 Poster: Efficient Loss-Based Decoding on Graphs for Extreme Classification »
Itay Evron · Edward Moroshko · Yacov Crammer -
2018 Poster: PAC-Bayes bounds for stable algorithms with instance-dependent priors »
Omar Rivasplata · Emilio Parrado-Hernandez · John Shawe-Taylor · Shiliang Sun · Csaba Szepesvari -
2018 Poster: Empirical Risk Minimization Under Fairness Constraints »
Michele Donini · Luca Oneto · Shai Ben-David · John Shawe-Taylor · Massimiliano Pontil -
2018 Tutorial: Statistical Learning Theory: a Hitchhiker's Guide »
John Shawe-Taylor · Omar Rivasplata -
2017 : Neil Lawrence, Francis Bach and François Laviolette »
Neil Lawrence · Francis Bach · Francois Laviolette -
2017 : John Shawe-Taylor - Distribution Dependent Priors for Stable Learning »
John Shawe-Taylor -
2017 : Yevgeny Seldin - A Strongly Quasiconvex PAC-Bayesian Bound »
Yevgeny Seldin -
2017 : Poster session »
Nicolò Cesa-Bianchi -
2017 : An Efficient Method to Impose Fairness in Linear Models »
Massimiliano Pontil · John Shawe-Taylor -
2017 : François Laviolette - A Tutorial on PAC-Bayesian Theory »
Francois Laviolette -
2017 Workshop: Workshop on Prioritising Online Content »
John Shawe-Taylor · Massimiliano Pontil · Nicolò Cesa-Bianchi · Emine Yilmaz · Chris Watkins · Sebastian Riedel · Marko Grobelnik -
2017 Workshop: From 'What If?' To 'What Next?' : Causal Inference and Machine Learning for Intelligent Decision Making »
Ricardo Silva · Panagiotis Toulis · John Shawe-Taylor · Alexander Volfovsky · Thorsten Joachims · Lihong Li · Nathan Kallus · Adith Swaminathan -
2017 Poster: Nonparametric Online Regression while Learning the Metric »
Ilja Kuzborskij · Nicolò Cesa-Bianchi -
2017 Poster: Rotting Bandits »
Nir Levine · Yacov Crammer · Shie Mannor -
2017 Poster: Boltzmann Exploration Done Right »
Nicolò Cesa-Bianchi · Claudio Gentile · Gergely Neu · Gabor Lugosi -
2017 Poster: Maximum Margin Interval Trees »
Alexandre Drouin · Toby Hocking · Francois Laviolette -
2016 Workshop: "What If?" Inference and Learning of Hypothetical and Counterfactual Interventions in Complex Systems »
Ricardo Silva · John Shawe-Taylor · Adith Swaminathan · Thorsten Joachims -
2016 Poster: Efficient Second Order Online Learning by Sketching »
Haipeng Luo · Alekh Agarwal · Nicolò Cesa-Bianchi · John Langford -
2015 Poster: Linear Multi-Resource Allocation with Semi-Bandit Feedback »
Tor Lattimore · Yacov Crammer · Csaba Szepesvari -
2014 Poster: Learning Multiple Tasks in Parallel with a Shared Annotator »
Haim Cohen · Yacov Crammer -
2014 Poster: Multilabel Structured Output Learning with Random Spanning Trees of Max-Margin Markov Networks »
Mario Marchand · Hongyu Su · Emilie Morvant · Juho Rousu · John Shawe-Taylor -
2013 Workshop: Resource-Efficient Machine Learning »
Yevgeny Seldin · Yasin Abbasi Yadkori · Yacov Crammer · Ralf Herbrich · Peter Bartlett -
2013 Poster: Online Learning with Switching Costs and Other Adaptive Adversaries »
Nicolò Cesa-Bianchi · Ofer Dekel · Ohad Shamir -
2013 Poster: PAC-Bayes-Empirical-Bernstein Inequality »
Ilya Tolstikhin · Yevgeny Seldin -
2013 Poster: From Bandits to Experts: A Tale of Domination and Independence »
Noga Alon · Nicolò Cesa-Bianchi · Claudio Gentile · Yishay Mansour -
2013 Oral: From Bandits to Experts: A Tale of Domination and Independence »
Noga Alon · Nicolò Cesa-Bianchi · Claudio Gentile · Yishay Mansour -
2013 Spotlight: PAC-Bayes-Empirical-Bernstein Inequality »
Ilya Tolstikhin · Yevgeny Seldin -
2013 Poster: A Gang of Bandits »
Nicolò Cesa-Bianchi · Claudio Gentile · Giovanni Zappella -
2013 Poster: Online Learning in Markov Decision Processes with Adversarially Chosen Transition Probability Distributions »
Yasin Abbasi Yadkori · Peter Bartlett · Varun Kanade · Yevgeny Seldin · Csaba Szepesvari -
2012 Workshop: Multi-Trade-offs in Machine Learning »
Yevgeny Seldin · Guy Lever · John Shawe-Taylor · Nicolò Cesa-Bianchi · Yacov Crammer · Francois Laviolette · Gabor Lugosi · Peter Bartlett -
2012 Poster: A Linear Time Active Learning Algorithm for Link Classification »
Nicolò Cesa-Bianchi · Claudio Gentile · Fabio Vitale · Giovanni Zappella -
2012 Poster: Mirror Descent Meets Fixed Share (and feels no regret) »
Nicolò Cesa-Bianchi · Pierre Gaillard · Gabor Lugosi · Gilles Stoltz -
2012 Poster: Volume Regularization for Binary Classification »
Yacov Crammer · Tal Wagner -
2012 Spotlight: Volume Regularization for Binary Classification »
Yacov Crammer · Tal Wagner -
2012 Poster: Learning Multiple Tasks using Shared Hypotheses »
Yacov Crammer · Yishay Mansour -
2011 Poster: Efficient Online Learning via Randomized Rounding »
Nicolò Cesa-Bianchi · Ohad Shamir -
2011 Oral: Efficient Online Learning via Randomized Rounding »
Nicolò Cesa-Bianchi · Ohad Shamir -
2011 Poster: PAC-Bayesian Analysis of Contextual Bandits »
Yevgeny Seldin · Peter Auer · Francois Laviolette · John Shawe-Taylor · Ronald Ortner -
2011 Poster: See the Tree Through the Lines: The Shazoo Algorithm »
Fabio Vitale · Nicolò Cesa-Bianchi · Claudio Gentile · Giovanni Zappella -
2011 Spotlight: See the Tree Through the Lines: The Shazoo Algorithm »
Fabio Vitale · Nicolò Cesa-Bianchi · Claudio Gentile · Giovanni Zappella -
2010 Poster: Learning via Gaussian Herding »
Yacov Crammer · Daniel Lee -
2010 Poster: New Adaptive Algorithms for Online Classification »
Francesco Orabona · Yacov Crammer -
2010 Talk: Opening Remarks and Awards »
Richard Zemel · Terrence Sejnowski · John Shawe-Taylor -
2009 Workshop: Learning from Multiple Sources with Applications to Robotics »
Barbara Caputo · Nicolò Cesa-Bianchi · David R Hardoon · Gayle Leen · Francesco Orabona · Jaakko Peltonen · Simon Rogers -
2009 Workshop: Advances in Ranking »
Shivani Agarwal · Chris J Burges · Yacov Crammer -
2009 Workshop: Grammar Induction, Representation of Language and Language Learning »
Alex Clark · Dorota Glowacka · John Shawe-Taylor · Yee Whye Teh · Chris J Watkins -
2009 Poster: From PAC-Bayes Bounds to KL Regularization »
Pascal Germain · Alexandre Lacasse · Francois Laviolette · Mario Marchand · Sara Shanian -
2009 Poster: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2009 Spotlight: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2008 Workshop: Learning from Multiple Sources »
David R Hardoon · Gayle Leen · Samuel Kaski · John Shawe-Taylor -
2008 Workshop: New Challanges in Theoretical Machine Learning: Data Dependent Concept Spaces »
Maria-Florina F Balcan · Shai Ben-David · Avrim Blum · Kristiaan Pelckmans · John Shawe-Taylor -
2008 Session: Oral session 6: Neural Coding »
Yacov Crammer -
2008 Poster: Exact Convex Confidence-Weighted Learning »
Yacov Crammer · Mark Dredze · Fernando Pereira -
2008 Poster: A Transductive Bound for the Voted Classifier with an Application to Semi-supervised Learning »
Massih R Amini · Nicolas Usunier · Francois Laviolette -
2008 Poster: Linear Classification and Selective Sampling Under Low Noise Conditions »
Giovanni Cavallanti · Nicolò Cesa-Bianchi · Claudio Gentile -
2008 Spotlight: Exact Convex Confidence-Weighted Learning »
Yacov Crammer · Mark Dredze · Fernando Pereira -
2008 Spotlight: A Transductive Bound for the Voted Classifier with an Application to Semi-supervised Learning »
Massih R Amini · Nicolas Usunier · Francois Laviolette -
2008 Poster: Theory of matching pursuit »
Zakria Hussain · John Shawe-Taylor -
2007 Workshop: Music, Brain and Cognition. Part 1: Learning the Structure of Music and Its Effects On the Brain »
David R Hardoon · Eduardo Reck-Miranda · John Shawe-Taylor -
2007 Poster: Variational Inference for Diffusion Processes »
Cedric Archambeau · Manfred Opper · Yuan Shen · Dan Cornford · John Shawe-Taylor -
2007 Poster: Learning Bounds for Domain Adaptation »
John Blitzer · Yacov Crammer · Alex Kulesza · Fernando Pereira · Jennifer Wortman Vaughan -
2006 Workshop: Dynamical Systems, Stochastic Processes and Bayesian Inference »
Manfred Opper · Cedric Archambeau · John Shawe-Taylor -
2006 Poster: A PAC-Bayes Risk Bound for General Loss Functions »
Pascal Germain · Alexandre Lacasse · Francois Laviolette · Mario Marchand -
2006 Poster: Learning from Multiple Sources »
Yacov Crammer · Michael Kearns · Jennifer Wortman Vaughan -
2006 Poster: Tighter PAC-Bayes Bounds »
Amiran Ambroladze · Emilio Parrado-Hernandez · John Shawe-Taylor -
2006 Poster: Information Bottleneck for Non Co-Occurrence Data »
Yevgeny Seldin · Noam Slonim · Naftali Tishby -
2006 Poster: Analysis of Representations for Domain Adaptation »
John Blitzer · Shai Ben-David · Yacov Crammer · Fernando Pereira -
2006 Poster: PAC-Bayes Bounds for the Risk of the Majority Vote and the Variance of the Gibbs Classifier »
Alexandre Lacasse · Francois Laviolette · Mario Marchand · Pascal Germain · Nicolas Usunier -
2006 Spotlight: PAC-Bayes Bounds for the Risk of the Majority Vote and the Variance of the Gibbs Classifier »
Alexandre Lacasse · Francois Laviolette · Mario Marchand · Pascal Germain · Nicolas Usunier