Timezone: »
Author Information
Richard Zemel (Columbia University)
Terrence Sejnowski (Salk Institute)
John Shawe-Taylor (UCL)
John Shawe-Taylor has contributed to fields ranging from graph theory through cryptography to statistical learning theory and its applications. However, his main contributions have been in the development of the analysis and subsequent algorithmic definition of principled machine learning algorithms founded in statistical learning theory. This work has helped to drive a fundamental rebirth in the field of machine learning with the introduction of kernel methods and support vector machines, driving the mapping of these approaches onto novel domains including work in computer vision, document classification, and applications in biology and medicine focussed on brain scan, immunity and proteome analysis. He has published over 300 papers and two books that have together attracted over 60000 citations. He has also been instrumental in assembling a series of influential European Networks of Excellence. The scientific coordination of these projects has influenced a generation of researchers and promoted the widespread uptake of machine learning in both science and industry that we are currently witnessing.
More from the Same Authors
-
2021 : Understanding Post-hoc Adaptation for Improving Subgroup Robustness »
David Madras · Richard Zemel -
2021 : Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data »
Sindy Löwe · David Madras · Richard Zemel · Max Welling -
2021 : Progress in Self-Certified Neural Networks »
Maria Perez-Ortiz · Omar Rivasplata · Emilio Parrado-Hernández · Benjamin Guedj · John Shawe-Taylor -
2022 : Exploring The Precision of Real Intelligence Systems at Synapse Resolution »
Mohammad Samavat · Tom Bartol · Kristen Harris · Terrence Sejnowski -
2022 : Shannon Information of Synaptic Weights Post Induction of Long-Term Potentiation (Learning) is Nearly Maximized »
Mohammad Samavat · Tom Bartol · Cailey Bromer · Jared Bowden · Dusten Hubbard · Dakota Hanka · Masaaki Kuwajima · John Mendenhall · Patrick Parker · Wickliffe Abraham · Kristen Harris · Terrence Sejnowski -
2022 : Using Shannon Information to Probe the Precision of Synaptic Strengths »
Mohammad Samavat · Tom Bartol · Kristen Harris · Terrence Sejnowski -
2022 Poster: Implications of Model Indeterminacy for Explanations of Automated Decisions »
Marc-Etienne Brunet · Ashton Anderson · Richard Zemel -
2022 Poster: Deep Ensembles Work, But Are They Necessary? »
Taiga Abe · Estefany Kelly Buchanan · Geoff Pleiss · Richard Zemel · John Cunningham -
2021 Workshop: Causal Inference & Machine Learning: Why now? »
Elias Bareinboim · Bernhard Schölkopf · Terrence Sejnowski · Yoshua Bengio · Judea Pearl -
2021 Poster: Variational Model Inversion Attacks »
Kuan-Chieh Wang · YAN FU · Ke Li · Ashish Khisti · Richard Zemel · Alireza Makhzani -
2021 Poster: Identifying and Benchmarking Natural Out-of-Context Prediction Problems »
David Madras · Richard Zemel -
2020 : Contributed talks 5: Fairness and Robustness in Invariant Learning: A Case Study in Toxicity Classification »
Elliot Creager · David Madras · Richard Zemel -
2020 Poster: PAC-Bayes Analysis Beyond the Usual Bounds »
Omar Rivasplata · Ilja Kuzborskij · Csaba Szepesvari · John Shawe-Taylor -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 Poster: Incremental Few-Shot Learning with Attention Attractor Networks »
Mengye Ren · Renjie Liao · Ethan Fetaya · Richard Zemel -
2019 Poster: SMILe: Scalable Meta Inverse Reinforcement Learning through Context-Conditional Policies »
Kamyar Ghasemipour · Shixiang (Shane) Gu · Richard Zemel -
2019 Poster: Efficient Graph Generation with Graph Recurrent Attention Networks »
Renjie Liao · Yujia Li · Yang Song · Shenlong Wang · Will Hamilton · David Duvenaud · Raquel Urtasun · Richard Zemel -
2018 Poster: Learning Latent Subspaces in Variational Autoencoders »
Jack Klys · Jake Snell · Richard Zemel -
2018 Poster: Gradient Descent for Spiking Neural Networks »
Dongsung Huh · Terrence Sejnowski -
2018 Poster: PAC-Bayes bounds for stable algorithms with instance-dependent priors »
Omar Rivasplata · Emilio Parrado-Hernandez · John Shawe-Taylor · Shiliang Sun · Csaba Szepesvari -
2018 Poster: Empirical Risk Minimization Under Fairness Constraints »
Michele Donini · Luca Oneto · Shai Ben-David · John Shawe-Taylor · Massimiliano Pontil -
2018 Poster: Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer »
David Madras · Toni Pitassi · Richard Zemel -
2018 Poster: Neural Guided Constraint Logic Programming for Program Synthesis »
Lisa Zhang · Gregory Rosenblatt · Ethan Fetaya · Renjie Liao · William Byrd · Matthew Might · Raquel Urtasun · Richard Zemel -
2018 Tutorial: Statistical Learning Theory: a Hitchhiker's Guide »
John Shawe-Taylor · Omar Rivasplata -
2017 : John Shawe-Taylor - Distribution Dependent Priors for Stable Learning »
John Shawe-Taylor -
2017 : An Efficient Method to Impose Fairness in Linear Models »
Massimiliano Pontil · John Shawe-Taylor -
2017 Workshop: Workshop on Prioritising Online Content »
John Shawe-Taylor · Massimiliano Pontil · Nicolò Cesa-Bianchi · Emine Yilmaz · Chris Watkins · Sebastian Riedel · Marko Grobelnik -
2017 : Contributed talk: Predict Responsibly: Increasing Fairness by Learning To Defer Abstract »
David Madras · Richard Zemel · Toni Pitassi -
2017 Workshop: From 'What If?' To 'What Next?' : Causal Inference and Machine Learning for Intelligent Decision Making »
Ricardo Silva · Panagiotis Toulis · John Shawe-Taylor · Alexander Volfovsky · Thorsten Joachims · Lihong Li · Nathan Kallus · Adith Swaminathan -
2017 Poster: Dualing GANs »
Yujia Li · Alex Schwing · Kuan-Chieh Wang · Richard Zemel -
2017 Poster: Causal Effect Inference with Deep Latent-Variable Models »
Christos Louizos · Uri Shalit · Joris Mooij · David Sontag · Richard Zemel · Max Welling -
2017 Spotlight: Dualing GANs »
Yujia Li · Alex Schwing · Kuan-Chieh Wang · Richard Zemel -
2017 Poster: Few-Shot Learning Through an Information Retrieval Lens »
Eleni Triantafillou · Richard Zemel · Raquel Urtasun -
2017 Poster: Prototypical Networks for Few-shot Learning »
Jake Snell · Kevin Swersky · Richard Zemel -
2016 : From Brains to Bits and Back Again »
Yoshua Bengio · Terrence Sejnowski · Christos H Papadimitriou · Jakob H Macke · Demis Hassabis · Alyson Fletcher · Andreas Tolias · Jascha Sohl-Dickstein · Konrad P Koerding -
2016 Workshop: "What If?" Inference and Learning of Hypothetical and Counterfactual Interventions in Complex Systems »
Ricardo Silva · John Shawe-Taylor · Adith Swaminathan · Thorsten Joachims -
2016 Poster: Understanding the Effective Receptive Field in Deep Convolutional Neural Networks »
Wenjie Luo · Yujia Li · Raquel Urtasun · Richard Zemel -
2016 Poster: Learning Deep Parsimonious Representations »
Renjie Liao · Alex Schwing · Richard Zemel · Raquel Urtasun -
2015 Poster: Skip-Thought Vectors »
Jamie Kiros · Yukun Zhu · Russ Salakhutdinov · Richard Zemel · Raquel Urtasun · Antonio Torralba · Sanja Fidler -
2015 Poster: Exploring Models and Data for Image Question Answering »
Mengye Ren · Jamie Kiros · Richard Zemel -
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2014 Poster: A Multiplicative Model for Learning Distributed Text-Based Attribute Representations »
Jamie Kiros · Richard Zemel · Russ Salakhutdinov -
2014 Poster: Multilabel Structured Output Learning with Random Spanning Trees of Max-Margin Markov Networks »
Mario Marchand · Hongyu Su · Emilie Morvant · Juho Rousu · John Shawe-Taylor -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2013 Poster: A Determinantal Point Process Latent Variable Model for Inhibition in Neural Spiking Data »
Jasper Snoek · Richard Zemel · Ryan Adams -
2013 Poster: On the Expressive Power of Restricted Boltzmann Machines »
James Martens · Arkadev Chattopadhya · Toni Pitassi · Richard Zemel -
2013 Session: Oral Session 3 »
Terrence Sejnowski -
2012 Workshop: Multi-Trade-offs in Machine Learning »
Yevgeny Seldin · Guy Lever · John Shawe-Taylor · Nicolò Cesa-Bianchi · Yacov Crammer · Francois Laviolette · Gabor Lugosi · Peter Bartlett -
2012 Poster: Collaborative Ranking With 17 Parameters »
Maksims Volkovs · Richard Zemel -
2012 Poster: Bayesian n-Choose-k Models for Classification and Ranking »
Kevin Swersky · Danny Tarlow · Richard Zemel · Ryan Adams · Brendan J Frey -
2012 Invited Talk: Suspicious Coincidences in the Brain »
Terrence Sejnowski -
2012 Poster: Efficient Sampling for Bipartite Matching Problems »
Maksims Volkovs · Richard Zemel -
2012 Poster: Cardinality Restricted Boltzmann Machines »
Kevin Swersky · Danny Tarlow · Ilya Sutskever · Richard Zemel · Russ Salakhutdinov · Ryan Adams -
2011 Workshop: New Frontiers in Model Order Selection »
Yevgeny Seldin · Yacov Crammer · Nicolò Cesa-Bianchi · Francois Laviolette · John Shawe-Taylor -
2011 Poster: PAC-Bayesian Analysis of Contextual Bandits »
Yevgeny Seldin · Peter Auer · Francois Laviolette · John Shawe-Taylor · Ronald Ortner -
2011 Session: Opening Remarks and Awards »
Terrence Sejnowski · Peter Bartlett · Fernando Pereira -
2010 Placeholder: Opening Remarks »
Terrence Sejnowski · Neil D Lawrence -
2009 Workshop: The Curse of Dimensionality Problem: How Can the Brain Solve It? »
Simon Haykin · Terrence Sejnowski · Steven W Zucker -
2009 Workshop: Grammar Induction, Representation of Language and Language Learning »
Alex Clark · Dorota Glowacka · John Shawe-Taylor · Yee Whye Teh · Chris J Watkins -
2009 Placeholder: Opening Remarks »
Richard Zemel -
2008 Workshop: Cortical Microcircuits and their Computational Functions »
Tomaso Poggio · Terrence Sejnowski -
2008 Workshop: Learning from Multiple Sources »
David R Hardoon · Gayle Leen · Samuel Kaski · John Shawe-Taylor -
2008 Workshop: New Challanges in Theoretical Machine Learning: Data Dependent Concept Spaces »
Maria-Florina F Balcan · Shai Ben-David · Avrim Blum · Kristiaan Pelckmans · John Shawe-Taylor -
2008 Poster: Comparing model predictions of response bias and variance in cue combination »
Rama Natarajan · Iain Murray · Ladan Shams · Richard Zemel -
2008 Poster: Learning Hybrid Models for Image Annotation with Partially Labeled Data »
Xuming He · Richard Zemel -
2008 Poster: Theory of matching pursuit »
Zakria Hussain · John Shawe-Taylor -
2008 Poster: Competing RBM density models for classification of fMRI images »
Tanya Schmah · Geoffrey E Hinton · Richard Zemel -
2007 Workshop: Music, Brain and Cognition. Part 1: Learning the Structure of Music and Its Effects On the Brain »
David R Hardoon · Eduardo Reck-Miranda · John Shawe-Taylor -
2007 Poster: Variational Inference for Diffusion Processes »
Cedric Archambeau · Manfred Opper · Yuan Shen · Dan Cornford · John Shawe-Taylor -
2006 Workshop: Decoding the neural code »
Eric Thomson · Bill Kristan · Terrence Sejnowski -
2006 Workshop: Dynamical Systems, Stochastic Processes and Bayesian Inference »
Manfred Opper · Cedric Archambeau · John Shawe-Taylor -
2006 Poster: Tighter PAC-Bayes Bounds »
Amiran Ambroladze · Emilio Parrado-Hernandez · John Shawe-Taylor