Timezone: »

Exact learning curves for Gaussian process regression on large random graphs
Matthew J Urry · Peter Sollich

Tue Dec 07 03:15 PM -- 03:20 PM (PST) @ Regency Ballroom

We study learning curves for Gaussian process regression which characterise performance in terms of the Bayes error averaged over datasets of a given size. Whilst learning curves are in general very difficult to calculate we show that for discrete input domains, where similarity between input points is characterised in terms of a graph, accurate predictions can be obtained. These should in fact become exact for large graphs drawn from a broad range of random graph ensembles with arbitrary degree distributions where each input (node) is connected only to a finite number of others. The method is based on translating the appropriate belief propagation equations to the graph ensemble. We demonstrate the accuracy of the predictions for Poisson (Erdos-Renyi) and regular random graphs, and discuss when and why previous approximations to the learning curve fail.

Author Information

Matthew J Urry (King's College London)
Peter Sollich (King's College London)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors