Timezone: »
We present a novel probabilistic model for distributions over sets of structures -- for example, sets of sequences, trees, or graphs. The critical characteristic of our model is a preference for diversity: sets containing dissimilar structures are more likely. Our model is a marriage of structured probabilistic models, like Markov random fields and context free grammars, with determinantal point processes, which arise in quantum physics as models of particles with repulsive interactions. We extend the determinantal point process model to handle an exponentially-sized set of particles (structures) via a natural factorization of the model into parts. We show how this factorization leads to tractable algorithms for exact inference, including computing marginals, computing conditional probabilities, and sampling. Our algorithms exploit a novel polynomially-sized dual representation of determinantal point processes, and use message passing over a special semiring to compute relevant quantities. We illustrate the advantages of the model on tracking and articulated pose estimation problems.
Author Information
Alex Kulesza (Google)
Ben Taskar (University of Washington)
Related Events (a corresponding poster, oral, or spotlight)
-
2010 Poster: Structured Determinantal Point Processes »
Wed. Dec 8th 08:00 -- 08:00 AM Room
More from the Same Authors
-
2014 Poster: Expectation-Maximization for Learning Determinantal Point Processes »
Jennifer A Gillenwater · Alex Kulesza · Emily Fox · Ben Taskar -
2013 Poster: Learning Adaptive Value of Information for Structured Prediction »
David J Weiss · Ben Taskar -
2013 Poster: Approximate Inference in Continuous Determinantal Processes »
Raja Hafiz Affandi · Emily Fox · Ben Taskar -
2013 Spotlight: Approximate Inference in Continuous Determinantal Processes »
Raja Hafiz Affandi · Emily Fox · Ben Taskar -
2012 Poster: Near-Optimal MAP Inference for Determinantal Point Processes »
Alex Kulesza · Jennifer A Gillenwater · Ben Taskar -
2012 Oral: Near-Optimal MAP Inference for Determinantal Point Processes »
Alex Kulesza · Jennifer A Gillenwater · Ben Taskar -
2010 Workshop: Coarse-to-Fine Learning and Inference »
Ben Taskar · David J Weiss · Benjamin J Sapp · Slav Petrov -
2010 Oral: Semi-Supervised Learning with Adversarially Missing Label Information »
Umar Syed · Ben Taskar -
2010 Session: Spotlights Session 3 »
Ben Taskar -
2010 Session: Oral Session 3 »
Ben Taskar -
2010 Poster: Semi-Supervised Learning with Adversarially Missing Label Information »
Umar Syed · Ben Taskar -
2010 Poster: Sidestepping Intractable Inference with Structured Ensemble Cascades »
David J Weiss · Benjamin J Sapp · Ben Taskar -
2009 Poster: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2009 Poster: Posterior vs Parameter Sparsity in Latent Variable Models »
Joao V Graca · Kuzman Ganchev · Ben Taskar · Fernando Pereira -
2009 Spotlight: Posterior vs Parameter Sparsity in Latent Variable Models »
Joao V Graca · Kuzman Ganchev · Ben Taskar · Fernando Pereira -
2009 Spotlight: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2009 Session: Oral Session 6: Theory, Optimization and Games »
Ben Taskar -
2007 Poster: Expectation Maximization, Posterior Constraints, and Statistical Alignment »
Kuzman Ganchev · Joao V Graca · Ben Taskar -
2007 Spotlight: Expectation Maximization, Posterior Constraints, and Statistical Alignment »
Kuzman Ganchev · Joao V Graca · Ben Taskar -
2007 Spotlight: Structured Learning with Approximate Inference »
Alex Kulesza · Fernando Pereira -
2007 Tutorial: Structured Prediction »
Ben Taskar -
2007 Poster: Structured Learning with Approximate Inference »
Alex Kulesza · Fernando Pereira -
2007 Poster: Learning Bounds for Domain Adaptation »
John Blitzer · Yacov Crammer · Alex Kulesza · Fernando Pereira · Jennifer Wortman Vaughan