Timezone: »
We address the problem of semi-supervised learning in an adversarial setting. Instead of assuming that labels are missing at random, we analyze a less favorable scenario where the label information can be missing partially and arbitrarily, which is motivated by several practical examples. We present nearly matching upper and lower generalization bounds for learning in this setting under reasonable assumptions about available label information. Motivated by the analysis, we formulate a convex optimization problem for parameter estimation, derive an efficient algorithm, and analyze its convergence. We provide experimental results on several standard data sets showing the robustness of our algorithm to the pattern of missing label information, outperforming several strong baselines.
Author Information
Umar Syed (University of Pennsylvania)
Ben Taskar (University of Washington)
Related Events (a corresponding poster, oral, or spotlight)
-
2010 Poster: Semi-Supervised Learning with Adversarially Missing Label Information »
Tue. Dec 7th 08:00 -- 08:00 AM Room
More from the Same Authors
-
2014 Poster: Expectation-Maximization for Learning Determinantal Point Processes »
Jennifer A Gillenwater · Alex Kulesza · Emily Fox · Ben Taskar -
2013 Poster: Learning Adaptive Value of Information for Structured Prediction »
David J Weiss · Ben Taskar -
2013 Poster: Approximate Inference in Continuous Determinantal Processes »
Raja Hafiz Affandi · Emily Fox · Ben Taskar -
2013 Spotlight: Approximate Inference in Continuous Determinantal Processes »
Raja Hafiz Affandi · Emily Fox · Ben Taskar -
2012 Poster: Near-Optimal MAP Inference for Determinantal Point Processes »
Alex Kulesza · Jennifer A Gillenwater · Ben Taskar -
2012 Oral: Near-Optimal MAP Inference for Determinantal Point Processes »
Alex Kulesza · Jennifer A Gillenwater · Ben Taskar -
2010 Workshop: Coarse-to-Fine Learning and Inference »
Ben Taskar · David J Weiss · Benjamin J Sapp · Slav Petrov -
2010 Spotlight: Structured Determinantal Point Processes »
Alex Kulesza · Ben Taskar -
2010 Poster: A Reduction from Apprenticeship Learning to Classification »
Umar Syed · Robert E Schapire -
2010 Poster: Structured Determinantal Point Processes »
Alex Kulesza · Ben Taskar -
2010 Session: Spotlights Session 3 »
Ben Taskar -
2010 Session: Oral Session 3 »
Ben Taskar -
2010 Poster: Sidestepping Intractable Inference with Structured Ensemble Cascades »
David J Weiss · Benjamin J Sapp · Ben Taskar -
2009 Poster: Posterior vs Parameter Sparsity in Latent Variable Models »
Joao V Graca · Kuzman Ganchev · Ben Taskar · Fernando Pereira -
2009 Spotlight: Posterior vs Parameter Sparsity in Latent Variable Models »
Joao V Graca · Kuzman Ganchev · Ben Taskar · Fernando Pereira -
2009 Session: Oral Session 6: Theory, Optimization and Games »
Ben Taskar -
2009 Poster: Adapting to the Shifting Intent of Search Queries »
Umar Syed · Aleksandrs Slivkins · Nina Mishra -
2007 Poster: Expectation Maximization, Posterior Constraints, and Statistical Alignment »
Kuzman Ganchev · Joao V Graca · Ben Taskar -
2007 Spotlight: Expectation Maximization, Posterior Constraints, and Statistical Alignment »
Kuzman Ganchev · Joao V Graca · Ben Taskar -
2007 Oral: A Multiplicative Weights Algorithm for Apprenticeship Learning »
Umar Syed · Robert E Schapire -
2007 Poster: A Multiplicative Weights Algorithm for Apprenticeship Learning »
Umar Syed · Robert E Schapire -
2007 Tutorial: Structured Prediction »
Ben Taskar